Чем пахнет дождь? (страница 2)
Как воздействует на землю солнечный свет?
В течение года на Землю поступает постоянный поток солнечного излучения. Однако интенсивность его попадания на земную поверхность зависит от времени года и широты (то есть удаленности конкретной точки от экватора). Чтобы земля и вода могли нагреться, солнечный свет должен быть преобразован в тепло или инфракрасную энергию. Это преобразование происходит, когда свет встречается с поверхностью. Отражающая поверхность будет переизлучать меньше энергии, чем поглощающая. Показатель того, сколько света отражается от поверхности, называется альбедо. Интересно, что очень немногие поверхности на Земле можно назвать полностью отражающими (альбедо = 1) или полностью поглощающими (альбедо = 0). Например, альбедо свежевыпавшего снега равно 0,8, а альбедо леса – около 0,15. Облака частично блокируют и отражают солнечный свет. От поверхностей белого цвета – к примеру, снега, свет в основном отражается, в то время как более темные поверхности, такие как леса и океаны, поглощают больше света. Свет, попадающий на Землю, либо отражается, либо поглощается, но чаще всего происходит нечто среднее, потому что редко можно говорить о полном отражении или поглощении. Глубина воздействия солнечного света зависит от того, на какую поверхность он попадает. Если свет падает на твердую почву, то глубоко он не продвигается и обогревает этот неглубокий слой в значительно большей степени, чем, например, слои жидкости, как в море, где солнечный свет проникает гораздо глубже и поглощается, обращаясь свет в тепло, распределяемое по значительно большему объему. Вот почему температура в пустынях днем невыносимо высокая, а после наступления сумерек опускается до 0 °C: ночью поверхность быстро отдает тепло. Море же постепенно нагревается за весенние и летние месяцы и тепло отдает медленно. Это оказывает огромное влияние на снижение колебаний температуры воздуха – как над водными массами, так и над прилегающей сушей. В прибрежных районах обычно более мягкие зимы, минимальные температуры не так экстремальны, как в континентальных районах, а летние месяцы менее жаркие, с меньшими максимумами. Когда свет отражается, и полученное тепло вновь излучается в атмосферу, оно начинает циркулировать по земному шару. Земная атмосфера играет роль одеяла, которое удерживает значительную часть этого тепла. Это объясняет, почему Луна такая холодная: солнечный свет поступает на ее поверхность, но там нет атмосферы, которая задерживала бы тепло. Солнечный свет преобразуется не только в теплоту, но и в химическую энергию посредством фотосинтеза растений – еще один жизненно важный для Земли процесс.
Какизменяется количество солнечного света на земле от севера к югу?
Положение Земли относительно Солнца подразумевает, что больше всего солнечного излучения приходится на экватор. Солнце непосредственно оказывается над экватором во время весеннего и осеннего равноденствия (когда день и ночь длятся одинаково), так что прямые солнечные лучи падают на экватор. В самой северной и самой южной точке Солнце оказывается во время летнего и зимнего солнцестояния. Летнее солнцестояние – самый длинный день в Северном полушарии, а зимнее – кратчайший, поскольку в это время Солнце достигает самой южной точки Южного полушария.
Полярный день
На полюсах максимальный уровень солнечного излучения наблюдается во время летнего солнцестояния, но, в отличие от экватора, солнечные лучи на полюсах косые и падают под углом. В это время тьма не наступает – светло круглые сутки. Летом к северу от Северного полярного круга и к югу от Южного полярного круга наступает так называемый полярный день, причем длительность полярного дня увеличивается в высоких широтах. С 12 июня по 1 июля на Северном полярном круге светло круглые сутки. За Южным полярным кругом полярный день длится более двух недель – неделю до 21 декабря и неделю после.
Полярная ночь
В районе зимнего солнцестояния, наоборот, на несколько недель Солнце полностью исчезает за горизонтом, погружая высокие широты Земли в полную тьму – долгую «полярную ночь». Именно в это время устанавливаются рекорды низких температур. Нынешний мировой рекорд с момента ведения записей установлен в Антарктиде: –89,2°C. По спутниковым данным ученые определили, что в некоторых частях Восточной Антарктиды температура может опускаться и ниже – например, в июле 2004 года она упала до –98.6 °C. Хотя во время осеннего равноденствия Солнце и начинает полностью исчезать за горизонтом, некоторое время в сутках все еще имеются сумерки – все более темные, – и, наконец, не остается ни малейшего намека на свет. На Северном полюсе это происходит в середине ноября и длится до конца января. Солнце вновь появляется во время весеннего равноденствия. Можно сказать, что для Северного полюса полдень соответствует летнему солнцестоянию, а полночь – зимнему.
Почему на земле четыре времени года?
Времена года определяются интенсивностью солнечного излучения. Дело не в том, насколько близко Земля подходит к Солнцу, хотя справедливо утверждать, что орбита Земли представляет собой эллипс. Причина смены времен года в том, что ось вращения нашей планеты наклонена; сейчас этот наклон составляет 23,4 градуса (хотя со временем показатель немного изменяется). Когда Земля совершает оборот вокруг Солнца за год, этот наклон сохраняется, в результате каждое полушарие отклоняется от Солнца зимой и приближается к Солнцу летом. Когда полушарие наклонено в сторону Солнца, падающие на него солнечные лучи гораздо более концентрированны, и поэтому воздух более теплый. Зимой же происходит обратный процесс. Для регионов, прилегающих к экватору, все сводится к смене сухих сезонов влажными, поскольку ветер реагирует на изменения интенсивности солнечного излучения и распределения тепла у поверхности. В средних широтах это приводит к переходу от осени к холодному зимнему сезону, а потом к весне и лету. Без наклона Земли не было бы и времен года.
Что такое ультрафиолетовое излучение?
Ультрафиолетовое излучение – это часть электромагнитного спектра излучения. Слово «излучение» означает электромагнитную энергию, испускаемую Солнцем. Его можно разделить на части в зависимости от длины волны и частоты излучения. Солнце испускает широкий и постоянный спектр волн. Они подразделяются на несколько категорий.
Радиоволны: самая низкая частота и наименьшая энергия. Диапазон длин волн, соответственно, от 1 см до 100 км. Их можно использовать для коммуникации: они способны переносить информацию или сигналы из одного места в другое. Радио- и телевизионные станции, как и компании сотовой связи, используют для передачи сигналов именно радиоволны. Звезды и планеты тоже испускают радиоволны, которые могут уловить радиотелескопы на Земле, принимающие радиочастоты электромагнитного спектра.
Микроволны: следующая по частоте часть спектра. Их длина составляет от 1 мм до 30 см. Они могут проходить через объекты, вызывая колебания воды и жира и повышение температуры, почему их и используют в микроволновых печах, а также для передачи данных – в мобильных телефонах и WiFi.
Инфракрасное излучение: средняя часть электромагнитного спектра испускает инфракрасную энергию, которая, по сути, является невидимым теплом. Однако не вся инфракрасная энергия вырабатывает тепло. В широком смысле длина волны в этой части электромагнитного излучения варьируется от нескольких миллиметров до 750 нанометров, или 0,75 микрон. Более короткие волны используются в технологиях создания изображения, а более длинные испускают тепло. Радиация – один из трех способов перемещения тепла по Земле (два других – конвекция и проводимость). В этом случае солнечный свет, попадая на поверхность Земли, излучается обратно как инфракрасная тепловая энергия.
Видимый свет: свет, который может различить человеческий глаз. Эта часть спектра делится по цветам радуги: от более низких частот, излучающих красный цвет, до более высоких, дающих голубой, синий и фиолетовый. Объекты поглощают и отражают световые волны разной длины. Цвет, который мы видим, связан с соотношением поглощения и отражения. Например, черный объект, поглощающий все волны видимого света именно поэтому выглядит черным, в то время как белый предмет отражает все световые волны, вследствие чего кажется белым. В промежутке возможны самые разнообразные сочетания.
Ультрафиолетовое излучение: электромагнитное излучение, о котором пишут, вероятно, чаще всего. Оно невидимо невооруженным глазом, его нельзя почувствовать, но ультрафиолетовые (УФ) лучи – причина загара кожи и ее сгорания при слишком длительном пребывании на солнце. Однако небольшое количество УФ-лучей – важное условие выработки организмом необходимой дозы витамина D. Кроме того, они используются в промышленных и медицинских целях для уничтожения бактерий и создания флуоресценции.
Рентгеновское излучение: волны с очень высокой частотой и огромной энергией, которые испускает солнечная корона. Рентгеновские лучи излучаются только очень горячими газами. Они не проходят сквозь атмосферу Земли, которая играет роль плотного экрана, но испускаются некоторыми объектами на Земле. Например, рентгеновский аппарат направляет интенсивные пучки электронов в небольшое пространство, что дает достаточно энергии для выработки рентгеновских лучей. Эти лучи с легкостью проходят через мягкие ткани, но не через кости, что позволяет диагностировать переломы.
Гамма-лучи: самые короткие волны, обладающие самой высокой частотой и, следовательно, самой высокой энергией. Эти лучи далеко не распространяются. Доходя до внешних слоев атмосферы Солнца, они поглощаются плазмой и испускаются заново с менее высокой частотой. Отличить рентгеновские лучи с наивысшей частотой от гамма-лучей практически невозможно, однако происхождение двух этих видов волн различно. Гамма-лучи излучаются ядрами атомов в процессе распада ядра, а рентгеновские лучи испускаются электронами.
Все эти волны излучают энергию на Землю и в космос. В то время как воздух, звук и вода передают энергию посредством механических волн или возмущений, им нужна среда для распространения.
Электромагнитным волнам среда не нужна: они распространяются в виде волн или частиц света (фотонов) и могут проходить через космический вакуум. Характеристики всех этих электромагнитных волн различны, однако они движутся в пространстве с одинаковой скоростью – около 300 тысяч километров в секунду. Когда же они достигают атмосферы Земли, все меняется: только волны определенной длины способны проникнуть в атмосферу, а еще меньше – дойти до земной поверхности. Хотя атмосфера Земли кажется нам прозрачной, ее слои непроницаемы для рентгеновского и гамма-излучения, и это хорошо, потому что такие лучи опасны для людей.
Атмосфера Земли проницаема только для световых волн определенной длины: можно провести аналогию с открытыми, закрытыми или приоткрытыми окнами.
Видимый свет, конечно, добирается до поверхности. Некоторым радиоволнам это тоже удается, другие отражаются от ионосферы (слоя атмосферы Земли на расстоянии более 85 км от земной поверхности, где высока концентрация ионов и электронов, отражающих часть радиоволн). То же верно и для инфракрасного и ультрафиолетового излучения: одни лучи проходят, другие отражаются обратно в космос, третьи поглощаются верхними защитными слоями атмосферы.
Что такое озоновый слой?
Большая часть ультрафиолетового излучения поглощается озоновым слоем. Эта невероятно тонкая прослойка состоит из газа озона, располагается в верхних слоях стратосферы – в 10–50 километрах от поверхности Земли, и весьма эффективно защищает нас от большей части ультрафиолетовых лучей. В XX веке потребовалось несколько десятилетий, чтобы понять, что чрезмерное использование хлорфторуглеродов (ХФУ) разрушает озоновый слой стратосферы. В нем обнаружились озоновые дыры, и после бурных дискуссий в мире запретили использовать ХФУ в холодильниках и аэрозолях, чтобы компенсировать причиненный ущерб. Сейчас, когда мы давно уже живем в XXI веке, некоторых ученых беспокоит то, что слишком тонкий озоновый слой впоследствии может чересчур увеличить количество ультрафиолетовых лучей, которые достигают Земли.
Как на нас воздействуют разные типы ультрафиолетового излучения?
Ультрафиолетовое излучение (УФ-лучи) можно разделить на подтипы: ультрафиолет А, ультрафиолет В и ультрафиолет С, имеющие разную длину волны.
• Ультрафиолет А (315–400 нм) – ближнее УФ-излучение, длинноволновой диапазон, проходит сквозь атмосферу;
• Ультрафиолет В (280–315 нм) – среднее УФ-излучение, 90 % поглощается озоновым слоем, 10 % проходит сквозь атмосферу;
• Ультрафиолет С (100–280 нм) – дальнее УФ-излучение, коротковолновый диапазон, полностью поглощается озоновым слоем и не доходит до поверхности Земли.
На жизнь на Земле главным образом влияет ультрафиолетовое излучение типа А (на его долю приходится около 95 % от всего УФ-излучения). Именно оно используется, в частности, в соляриях и вызывает загар. Известно, что чрезмерная доза ультрафиолета А приводит к раку кожи. Если ультрафиолет А способен глубоко проникать в кожу (в дермис и подкожные слои), то ультрафиолет В может попадать лишь на поверхность кожи (эпидермис). Однако именно воздействием ультрафиолета В объясняются ожоги и покраснение внешнего слоя кожи. Он также играет ключевую роль в развитии рака кожи, а наибольшую активность проявляет в районе полудня.