Как устроен мир на самом деле (страница 4)

Страница 4

В 1800 г. пролетающий мимо нашей планеты зонд подсчитал бы, что растительное топливо по-прежнему обеспечивает более 98 % всего тепла и света, используемых доминантными двуногими, а мускульная сила людей и животных все еще поставляет 90 % механической энергии, необходимой для сельского хозяйства, строительства и промышленного производства. В Великобритании, где Джеймс Уатт в 1770-х гг. внедрил и усовершенствовал паровую машину, компания Boulton & Watt начала выпускать машины мощностью 25 лошадиных сил, но к 1800 г. они продали меньше 500 таких машин, что составляло крошечную часть от общей мощности лошадей и работников физического труда[14].

Даже в 1850 г. увеличившаяся добыча угля в Европе и Северной Америке обеспечивала не более 7 % энергии от топлива; почти половину всей полезной кинетической энергии получали от тягловых животных, около 40 % – от мускульной силы людей и всего 15 % от трех видов неодушевленных первичных двигателей: водяных колес, ветряных мельниц и медленно завоевывавших признание паровых машин. В 1850 г. мир был гораздо больше похож на мир 1700-х или даже 1600-х гг., чем на мир 2000-х.

Однако к 1900 г. общая доля ископаемого топлива, возобновляемых и неодушевленных источников энергии существенно изменилась – современные источники (уголь и в какой-то степени сырая нефть) обеспечивали половину всей первичной энергии, а вторая половина приходилась на традиционное топливо (дерево, древесный уголь, солома). Водяные турбины на гидроэлектростанциях начали вырабатывать электричество в 1880-х гг.; следующей была геотермальная электростанция, а после Второй мировой войны появились атомные, солнечные и ветряные электростанции (новые источники возобновляемой энергии). Но и в 2020 г. более половины вырабатываемого в мире электричества производится путем сжигания ископаемого топлива, в основном угля и природного газа.

В 1900 г. неодушевленные первичные двигатели поставляли около половины всей механической энергии: наибольший вклад вносили паровые машины, работающие на угле, далее шли усовершенствованные водяные колеса и новые водяные турбины (появившиеся еще в 1830-х гг.), ветряные мельницы и новые паровые турбины (с конца 1880-х), а также двигатели внутреннего сгорания (первые бензиновые двигатели также появились в 1880-х гг.)[15].

В 1950 г. ископаемое топливо обеспечивало почти три четверти первичной энергии (преимущественно за счет угля), а неодушевленные первичные двигатели – теперь среди них доминировали бензиновые и дизельные двигатели внутреннего сгорания – более 80 % механической энергии. А в 2000 г. только бедняки в странах с низким доходом использовали топливо из биомассы; дерево и солома составляли лишь около 12 % первичных источников энергии в мире. На первичные источники из плоти и крови приходилось только 5 % механической энергии; людей и тягловых животных почти полностью заменили механизмы, приводимые в действие жидким топливом или электричеством.

На протяжении двух последних веков инопланетные зонды наблюдали бы по всему миру быструю замену первичных источников энергии, сопровождавшуюся расширением и диверсификацией ископаемых энергоресурсов, а также не менее быстрым появлением, освоением и распространением новых неодушевленных первичных двигателей – сначала паровых машин, работающих на угле, затем двигателей внутреннего сгорания (поршневых и турбин). Самый последний визит зондов открыл бы перед ними картину по-настоящему глобального общества, основанного на массовом – стационарном и мобильном – преобразовании ископаемых углеводородов, развернутом практически везде, за исключением некоторых необитаемых регионов планеты.

Использование энергии в современном мире

Какие изменения принесла эта мобилизация экстрасоматической энергии? Глобальные энергоресурсы обычно относят к общей (валовой) продукции, но более наглядным было бы оценить энергию, доступную для преобразования в полезные формы. Для этого мы должны вычесть предварительные потери (во время сортировки и очистки угля, перегонки сырной нефти и обработки природного газа), неэнергетическое использование (преимущественно в качестве сырья для химической промышленности, а также смазочных материалов для машин и механизмов, от насосов до авиадвигателей, и как дорожное покрытие) и потери при передаче электроэнергии. С этими поправками – и округлением, чтобы избежать впечатления неуместной точности, – мои расчеты показывают, что в XIX в. потребление ископаемого топлива выросло в 60 раз, в XX – в 16 раз, а за последние 220 лет – в 1500 раз[16].

Усиливающаяся зависимость от ископаемого топлива – самый важный фактор, объясняющий достижения современной цивилизации, а также наши опасения относительно уязвимости его поставок и воздействия его сжигания на окружающую среду. В реальности прирост энергоресурсов был значительно больше 1500-кратного, о котором я упоминал, поскольку следует учитывать сопутствующее повышение эффективности преобразования энергии[17]. В 1800 г. эффективность сжигания угля в печах и бойлерах для получения тепла и горячей воды не превышала 25–30 %, и только 2 % угля, потребляемого паровыми машинами, превращались в полезную работу, так что общая эффективность преобразования не превышала 15 %. Сто лет спустя усовершенствованные печи, бойлеры и двигатели повысили эффективность до почти 20 %, а к 2000 г. средняя эффективность преобразования составляла около 50 %. Следовательно, XX в. дал почти 40-кратный рост полезной энергии, а с 1800 г. ее выработка увеличилась почти в 3500 раз.

Чтобы еще лучше оценить масштаб этих перемен, следует привести эти показатели в пересчете на одного человека. Численность населения нашей планеты увеличилась с 1 миллиарда в 1800 г. до 1,6 миллиарда в 1900 г. и до 6,1 миллиарда в 2000 г. Таким образом, поставки полезной энергии (все величины выражены в гигаджоулях на душу населения) увеличились с 0,05 в 1800 г. до 2,7 в 1900 г. и 28 в 2000 г. Стремительный рост экономики Китая после 2000 г. стал главной причиной увеличения поставок полезной энергии в 2020 г. до 34 ГДж на человека. В среднем современный житель Земли имеет в своем распоряжении почти в 700 раз больше полезной энергии, чем его предки в начале XIX в.

Более того, на протяжении жизни людей, родившихся непосредственно после Второй мировой войны (с 1950 по 2020 г.), этот показатель вырос более чем в три раза, с 10 до 34 ГДж на человека. Для наглядности можно воспользоваться следующей метафорой: как будто в личном распоряжении каждого жителя Земли находится около 800 килограммов (0,8 тонны, или почти 6 баррелей) сырой нефти или около 1,5 тонны хорошего битуминозного угля. Это количество энергии можно также перевести в трудозатраты: на каждого из нас круглосуточно работают 60 взрослых мужчин. А если речь идет о богатых странах, эквивалент непрерывного труда будет составлять от 200 до 240 человек, в зависимости от конкретной страны. Другими словами, в нашем распоряжении находится беспрецедентное количество энергии.

Последствия этого очевидны – с точки зрения интенсивности труда, рабочего времени, отдыха и общего уровня жизни. Изобилие полезной энергии подчеркивает и объясняет все достижения – от лучшего питания до массовых путешествий, от механизации производства до транспорта и личных электронных средств связи, – которые в богатых странах являются скорее нормой, чем исключением. Эти недавние изменения отличаются в разных странах: естественно, они менее заметны в странах с высоким доходом, где использование энергии на душу населения уже 100 лет назад было относительно высоким, и явно видны в странах, модернизация экономик которых резко ускорилась с 1950-х гг., особенно в Японии, Южной Корее и Китае. В период с 1950 по 2020 г. Соединенные Штаты практически удвоили производство полезной энергии на душу населения из таких источников, как ископаемое топливо и первичное электричество (приблизительно до 150 ГДж на человека); в Японии этот показатель вырос более чем вчетверо (почти до 80 ГДж на человека), а Китай стал свидетелем невероятного роста в 120 раз (почти до 50 ГДж на человека)[18].

Траектория ресурсов полезной энергии чрезвычайно информативна, потому что энергия не просто один из компонентов сложной структуры биосферы, человеческого общества и экономики, не просто еще одна переменная в сложных уравнениях, описывающих эти взаимосвязанные системы. Преобразование энергии – это основа жизни и эволюции. Современную историю можно рассматривать как необычно быструю последовательность переходов к новым источникам энергии, а современный мир – как совокупный результат этих преобразований.

Значение энергии в жизни человеческого общества первыми поняли физики. В 1886 г. Людвиг Больцман, один из основателей термодинамики, говорил о свободной энергии – то есть энергии, доступной для преобразования, – как о Kampfobjekt (объекте борьбы) за жизнь, которая в конечном итоге зависит от приходящего к нам солнечного излучения[19]. Эрвин Шрёдингер, лауреат Нобелевской премии по физике 1933 г., так определил основу жизни: «Отрицательная энтропия – вот то, чем организм питается» (отрицательная энтропия, или негэнтропия = свободная энергия)[20]. В 1920-х гг., после этих фундаментальных физических открытий конца XIX и начала XX в. американский математик и статистик Альфред Лотка пришел к выводу, что эволюционным преимуществом обладают организмы, способные лучше улавливать доступную энергию[21].

В начале 1970-х гг. американский эколог Говард Одум объяснил, что «весь прогресс обусловлен специальными субсидиями в энергию и, как только они прекращаются, прогресс исчезает»[22]. Уже после него физик Роберт Эйрес в своих работах постоянно подчеркивал центральную роль энергии во всех экономиках: «в сущности, экономическая система предназначена для извлечения, усвоения и преобразования энергии как ресурсов в энергию, воплощенную в товарах и услугах»[23]. Другими словами, энергия – это единственная по-настоящему универсальная валюта, и без ее трансформации невозможны никакие процессы (от вращения галактик до жизни эфемерных насекомых)[24].

Учитывая все эти легко проверяемые реалии, трудно понять, почему современная экономика, этот свод объяснений и правил, знатоки которых имеют большее влияние на политику общества, чем любые другие специалисты, в большинстве своем игнорируют энергию. Как отметил Эйрес, в экономике не только отсутствует систематическое осознание значения энергии для физического процесса производства; экономика предполагает, «что энергия не имеет значения (большого), потому что доля затрат на энергию в экономике настолько мала, что ее можно игнорировать… как если бы продукция могла быть произведена только за счет труда и капитала – или как если бы энергия была просто формой созданного руками человека капитала, который может быть произведен (а не добыт) трудом и капиталом»[25].

Современные экономисты не получают наград и премий, занимаясь энергией, а современные ученые начинают беспокоиться только тогда, когда возникает угроза поставки той или иной коммерческой формы энергии или цены на нее начинают расти. Эту ситуацию иллюстрирует поисковый сервис Ngram Viewer компании Google, позволяющий увидеть популярность терминов, использовавшихся в печатных источниках в период с 1500 по 2019 г. В ХХ в. частота использования термина «стоимость энергии» оставалась пренебрежимо малой до внезапного пика начала 1970-х (вызванного тем, что ОПЕК в пять раз повысила цены на сырую нефть; более подробно об этом чуть ниже), а затем еще одного подъема в начале 1980-х. После снижения цен наблюдался такой же крутой спад частоты упоминаний, и в 2019 г. термин «стоимость энергии» использовался не чаще, чем в 1972 г.

[14] Hills R. L. Power from Steam: A History of the Stationary Steam Engine. Cambridge: Cambridge University Press. 1989. P. 70; Kanefsky J. and Robey J. Steam engines in 18th-century Britain: A quantitative assessment // Technology and Culture. 1980. 21. P. 161–186.
[15] Эти расчеты в высшей степени приблизительны; мы знаем общую численность рабочей силы и тягловых животных, но нам все равно приходится делать допущения об их средней мощности и общей продолжительности рабочего времени.
[16] В цифрах: менее 0,5 ЭДж в 1800 г., рост почти до 22 ЭДж в 1900 г. и почти до 350 ЭДж в 2000 г., прогнозируется до 525 ЭДж в 2020 г. Более подробно о преобразовании энергии в глобальном масштабе и по странам см.: Smil V. Energy Transitions: Global and National Perspectives. Santa Barbara, CA: Praeger, 2017.
[17] Совокупный индекс изменения эффективности использования энергии основан на вычислениях, выполненных мной для книги: Smil. Energy and Civilization. P. 297–301. Общую эффективность преобразования энергии см. диаграммы Сэнки для энергетических потоков в мире (https://www.iea.org/sankey) и в отдельных странах; для США см.: https://flowcharts.llnl.gov/content/assets/images/energy/us/Energy_US_2019.png
[18] Данные для этих подсчетов можно найти в отчете ООН «Ежегодник статистики энергетики» (Energy Statistics Yearbook): https://unstats.un.org/unsd/energystats/pubs/yearbook/; и в статистическом обзоре компании BP: https://www.bp.com/en/global/corporate/energy-economics/statisticalreview-of-world-energy/downloads.html
[19] Boltzmann L. Der zweite Hauptsatz der mechanischen Wärmetheorie (лекция, прочитанная на Торжественном собрании Имперской академии наук 29 мая 1886 г.). См. также: Schuster P. Boltzmann and evolution: Some basic questions of biology seen with atomistic glasses // Gallavotti G. et al., eds. Boltzmann’s Legacy. Zurich: European Mathematical Society, 2008. P. 1–26.
[20] Schrödinger E. What Is Life? Cambridge: Cambridge University Press, 1944. P. 71. Шрёдингер Э. Что такое жизнь? / Пер. с англ. А. Малиновского. М.: Римис, 2015.
[21] Lotka A. J. Natural selection as a physical principle // Proceedings of the National Academy of Sciences. 1922. 8/6. P. 151–154.
[22] Odum H. T. Environment, Power, and Society. N. Y.: Wiley Interscience, 1971. P. 27.
[23] Ayres R. Gaps in mainstream economics: Energy, growth, and sustainability // Shmelev S., ed. Green Economy Reader: Lectures in Ecological Economics and Sustainability. Berlin: Springer, 2017. P. 40. См. также: Ayres R. Energy, Complexity and Wealth Maximization. Cham: Springer, 2016.
[24] Smil. Energy and Civilization. P. 1.
[25] Ayres. Gaps in mainstream economics. P. 4.