Метамышление. Как нейронауки помогают нам понять себя (страница 4)
В таких более сложных обратных задачах догадаться, в чем состоит лучшее объяснение, можно на основе дополнительной информации из других источников. К примеру, чтобы оценить фактический диаметр круга, мы можем использовать такие подсказки, как различия в изображении, получаемом разными глазами, разницу в текстуре, положении и оттенке близлежащих объектов и так далее.
Чтобы в реальном времени понять, как это происходит, взгляните на эти две картинки.
На изображении слева большинство людей видят группу выпуклых бугорков, приподнятых над поверхностью страницы. Изображение справа, напротив, выглядит как совокупность маленьких ямок или впадин. В чем же разница?
Иллюзия возникает из-за того, что ваш мозг решает обратную задачу. На самом деле левая и правая картинки – одно и то же изображение, развернутое на 180 градусов (можете перевернуть книгу и проверить!). Разными они кажутся, поскольку наша зрительная система привыкла, что свет падает сверху – источник света, заливающего окружающее пространство, обычно располагается где-то у нас над головой. В свою очередь, освещение снизу вверх – например, свет костра на склоне скалы или лучи прожекторов, направленные на верхушку собора, – статистически встречается реже. Когда мы смотрим на эти две картинки, наш мозг интерпретирует светлые части левого изображения как свет, падающий на выпуклые бугорки, а темные части правого изображения – как тени, создаваемые ямками, несмотря на то что обе картинки составлены из одного и того же исходного материала.
Другая поразительная иллюзия – изображение, созданное ученым Эдвардом Адельсоном.
Шахматная доска Адельсона
Клетки, обозначенные на левом рисунке буквами A и B, на самом деле окрашены в идентичный оттенок серого; они имеют одинаковую яркость. Клетка B кажется светлее, поскольку ваш мозг «знает», что она расположена в тени: чтобы воспроизвести для глаза тот же уровень освещенности, что и у клетки A, которая целиком находится на свету, она должна быть светлее изначально. Эквивалентность клеток A и B легко можно оценить, соединив их – как на правом рисунке. Подсказка, которую дает этот дополнительный мостик, перекрывает фактор тени в интерпретации мозгом изображения (чтобы убедиться, что левое и правое изображения одинаковы, попробуйте закрыть их нижнюю половину листом бумаги).
Получается, что на самом деле эти удивительные иллюзии – вовсе не иллюзии. Одну интерпретацию изображения дает научная аппаратура – показатели, выдаваемые измерителями освещенности и компьютерными мониторами. Другую – наши зрительные системы, настроенные на обнаружение закономерностей, таких как тени или свет, падающий сверху вниз. Эти закономерности помогают нашим системам выстраивать действенные модели мира. В реальном мире, где есть свет, тени и полутени, эти модели обычно оказываются верными. Многие оптические иллюзии хитроумным способом воздействуют на работу системы, искусно настроенной на получение перцептивных выводов[18]. Кроме того, как мы узнаем из следующего раздела, некоторые принципы устройства мозга согласуются с тем, как эта система в массовых масштабах решает обратные задачи.
Построение моделей мира
Зрительная система – одна из наиболее изученных частей мозга человека и обезьян. Различные области задней части мозга обрабатывают разные аспекты визуального сигнала. Чем выше их цифровое обозначение, тем более продвинутой стадии обработки изображения они соответствуют. Области V1 и V2 извлекают информацию о направлении линий и формах, V4 – о цвете, а V5 – о движении объектов. На выходе из областей V мы попадаем в русло вентрального зрительного потока, задача которого – собрать все части информации воедино и идентифицировать цельные объекты, такие как лица, тела, столы и стулья. Параллельно области мозга, входящие в дорсальный зрительный поток, отслеживают, где располагаются и как перемещаются объекты[19].
Правое полушарие мозга человека. Отмечено расположение четырех долей головного мозга, мозжечка и ключевых зрительных путей
В начале вентрального зрительного потока отдельные клетки мозга кодируют лишь небольшую часть внешнего мира – например, участок в нижнем левом углу нашего поля зрения. Но по мере продвижения вверх по иерархической структуре клетки, подобно отдаляющейся камере, начинают расширять свой фокус. В конце концов достигается высшая точка иерархии, в которой уже не столь важно, где отображается стимул. Гораздо большую роль играет, что он воссоздает: лицо, дом, кошку, собаку и так далее. Объектив максимально отдален, и информация об идентичности объекта представлена независимо от его расположения.
Однако крайне важно, что информация в зрительной системе не течет в одном направлении. Долгое время преобладало мнение, согласно которому обработка информации в мозге является системой прямого регулирования: она получает информацию из внешнего мира, обрабатывает ее тайными, хитроумными способами, а затем выдает команды, заставляющие нас ходить и говорить. Сейчас такая модель («вход – выход») вытеснена множеством данных, которые в нее не вписываются. В зрительной системе, например, существует столько же, если не больше, связей, направленных в противоположную сторону. Они так и называются – обратная связь, или «сверху вниз». Информация распространяется как вперед, так и назад; постоянные циклы нейронной активности поставляют данные как с нижних уровней иерархии на верхние, так и в обратном направлении. Такой способ рассмотрения механизмов сознания известен как предиктивная обработка. Это радикально иное понимание работы мозга, хотя оно имеет уже продолжительную интеллектуальную историю, о которой свидетельствует обширная библиография в примечаниях[20].
Архитектура предиктивной обработки особенно хорошо подходит для решения обратных задач. Вместо пассивного получения информации мозг может использовать связи «сверху вниз», для того чтобы активно строить наше восприятие внешнего мира и придавать форму тому, что мы видим, слышим, думаем и чувствуем. Более высокие уровни иерархии предоставляют информацию о том, с чем мы можем столкнуться в той или иной ситуации, а также о диапазоне гипотез, которые мы способны принять. Например, вы знаете, что у вашего друга есть лабрадор, и поэтому ожидаете увидеть собаку, когда входите в его дом, но не знаете, где именно в вашем зрительном поле она появится. Эта предварительная высокоуровневая информация – пространственно-инвариантное понятие «собака» – обеспечивает соответствующим контекстом более низкие уровни зрительной системы, помогая им легко интерпретировать размытое пятно в форме собаки, устремляющееся к вам, когда вы открываете дверь.
Степень, до которой наши системы восприятия должны полагаться на такие закономерности, в свою очередь, зависит от того, насколько мы сомневаемся в информации, поступающей от наших органов чувств. Вспомните дилемму Петрова. Если бы он был уверен в безупречности и безошибочности технологии обнаружения ракет, то в меньшей степени был бы готов усомниться в том, что говорила ему система. Стоит ли нам корректировать свои убеждения при получении новых данных, зависит от того, насколько надежной мы считаем эту информацию.
В действительности байесовские версии прогностической обработки говорят нам о том, что стоит комбинировать различные источники информации (наши предварительные убеждения и данные, поступающие через органы чувств) обратно пропорционально нашей неуверенности в них. Можно представить этот процесс как помещение теста для пирога в гибкую форму для выпечки. Форма – это наши предварительные предположения о мире. Тесто же представляет собой сенсорную информацию – световые и звуковые волны, улавливаемые глазами и ушами. Если поступающие данные точны или информативны, то тесто будет густым или почти твердым и на него почти не повлияет форма для выпечки. Если же, напротив, данные менее точны, то тесто будет более жидким и конечный продукт примет соответствующие очертания.
К примеру, глаза предоставляют более точную информацию о местонахождении объектов, нежели слух. Это означает, что зрение может изолировать предполагаемый источник звука, исказив наше восприятие его местоположения. Этим умело пользуются чревовещатели, способные «передавать» свой голос марионетке, которую они держат на расстоянии вытянутой руки. Истинное мастерство чревовещания заключается в умении говорить, не шевеля губами. Если добиться этого, мозг зрителей сделает все остальное, соотнеся звук с его следующим наиболее вероятным источником – говорящей куклой[21].
Таким образом, вполне логично, что отслеживание неопределенности – неотъемлемая часть того, как мозг обрабатывает сенсорную информацию. Наблюдения за клетками зрительной коры головного мозга показывают, как это может происходить. Хорошо известно, что движущиеся объекты, такие как машущая рука или прыгающий мяч, активируют нейроны в области мозга обезьян, известной как MT (аналог человеческой V5). Но клетки в MT активируются не при любом направлении движения. Некоторые из клеток больше реагируют на объекты, движущиеся влево, другие – вверх, вниз и во всех других направлениях. Когда частота возбуждения клеток МТ фиксируется в результате многократных воспроизведений различных направлений движения, формируется распределение, подобное тому, что мы наблюдали в игре в кости. В каждый отдельно взятый момент времени эти популяции клеток МТ можно считать сигнализирующими о неопределенности в отношении конкретного направления движения, аналогично тому, как искаженное общее значение игральных костей сигнализирует о вероятности выпадения ноля или тройки[22].
Неопределенность крайне важна и для оценки состояния нашего собственного тела. Информация о том, где в пространстве располагаются конечности, как быстро бьется сердце или какова интенсивность болевого стимула, поставляется в череп сенсорными нейронами. С точки зрения мозга разница между электрическими импульсами, проходящими по зрительному нерву, и нейронными сигналами, поступающими из кишечника, сердца, мышц или суставов, весьма незначительна. Все это – сигналы, сообщающие о том, что может происходить за пределами черепа, и искаженные иллюзиями вроде описанных выше оптических. В одном известном эксперименте поглаживание резиновой руки синхронно с настоящей (скрытой) рукой испытуемого убеждало его, что резиновая рука – его собственная.
В свою очередь, иллюзия обладания новой резиновой рукой приводила к ослаблению нейронных сигналов, посылаемых мозгом настоящей руке. Подобно тому как кукла перехватывает голос чревовещателя, синхронность наблюдений за резиновой рукой и ощущений при поглаживании уменьшает чувство обладания настоящей рукой[23].
Используем неопределенность, чтобы сомневаться
Конечно, никто не говорит, что каждый раз, познавая мир вокруг, мы специально прибегаем к уравнениям Байеса. Напротив, механизмы, используемые мозгом для решения обратных задач, срабатывают сами по себе – немецкий физик Герман фон Гельмгольц назвал это процессом «бессознательных умозаключений». Мозг быстро, буквально мгновенно оценивает влияние света и тени на впадины, выпуклости и шахматные доски, изображения которых мы видели на предыдущих страницах.
Аналогичным образом мы воссоздаем лицо близкого друга, вкус хорошего вина и запах свежеиспеченного хлеба, комбинируя предварительные предположения и информацию от органов чувств; тщательно взвешивая их с учетом соответствующих неопределенностей. Нейробиолог Анил Сет называет наше восприятие мира «контролируемой галлюцинацией» – наилучшим предположением о том, что на самом деле есть.