От микроорганизмов до мегаполисов (страница 8)
Случаи линейного (постоянного) роста широко распространены. Расстояние (длина), которое проходит свет, излучаемый мириадами звезд, увеличивается на 300 000 000 м (299 792 458 м, если говорить точно) каждую секунду. Расстояние, преодолеваемое грузовиком, движущимся в среднем со скоростью 100 км/ч по ночному шоссе, за то же время возрастает на 27,7 м. Согласно закону Ома – напряжение (вольты, V) равно силе тока (амперы, А), умноженной на сопротивление (ом, Ω) электрической цепи, – когда сопротивление не меняется, с ростом напряжения значение силы тока в цепи растет линейно[3]. Фиксированная (и не облагаемая налогами) почасовая оплата дает линейное увеличение зарплаты при увеличении рабочего времени. Поминутная тарификация сотовой связи (а не безлимитный тариф) ведет к линейному увеличению ежемесячного счета при линейном увеличении продолжительности разговоров.
В природе линейный рост часто встречается в качестве временного на ранних этапах постнатального развития, будь то поросята или дети. В развитых странах уже более века средняя ожидаемая продолжительность жизни растет линейно. Линейная траектория – единственная долгосрочная траектория роста урожаев, от основных зерновых до фруктов. Совершенствование технических характеристик и возможностей машин также происходит линейно, включая рост средней мощности американских легковых автомобилей со времен Ford Model T в 1908 году, максимальную силу тяги и степень двухконтурности[4] реактивных двигателей с момента их появления, максимальную скорость поездов, давление в котлах паровозов (с начала регулярной эксплуатации в 1830 году) и максимальное водоизмещение кораблей.
Иногда простой линейный рост является результатом сложных взаимодействий. В период между 1945 и 1978 годами потребление бензина в США представляло собой почти идеальный линейный рост, и после короткого четырехлетнего периода спада в 1983 году он возобновился и продолжался до 2007 года (USEIA, 2017b). Две линейные траектории стали результатом взаимного влияния нелинейных изменений, таких как резкий рост, более чем в семь раз в период с 1945 по 2015 год, числа владельцев автомобилей и застой в средней эффективности потребления топлива автомобильными двигателями до 1977 года, последующего значительного повышения с 1978 по 1985 год и нового застоя на следующие 25 лет (USEPA, 2015).
Рис. 1.4. Графики предполагаемого увеличения роста в зависимости от возраста (средние значения и величины в рамках двух стандартных отклонений) для мальчиков и девочек двух – пяти лет. Упрощено по данным ВОЗ (2006)
Некоторые организмы, включая бактерии, выращиваемые в лабораториях, и маленьких детей, испытывают периоды линейного роста, прибавляя то же число клеток или рост или массу в течение конкретных периодов времени. Бактерии развиваются этим путем, когда обеспечены ограниченным, но постоянным количеством питательных веществ. У детей наблюдаются периоды линейного увеличения как веса, так и роста. Например, американские мальчики испытывают краткие периоды линейной прибавки веса в возрасте между 21 и 36 месяцами (Kuczmarski et al., 2002), и Нормы развития детей Всемирной организации здравоохранения (ВОЗ) указывают на идеальное линейное увеличение роста у мальчиков в возрасте от трех до пяти лет и почти линейную траекторию у девочек того же возраста (WHO, 2006; рис. 1.4).
Экспоненциальный рост
Экспоненциальный рост, начинающийся постепенно и затем резко возрастающий, приковывает внимание. Свойства этого роста, прежде известные как геометрический коэффициент или геометрическая прогрессия, иллюстрируются сотни лет, пожалуй, даже тысячи, хотя первый письменный пример относится к 1256 году – это история об изобретателе шахмат, который попросил своего правителя-благодетеля вознаградить его, удваивая число зерен риса (или пшеницы?) на каждой следующей клетке поля. 128 зерен (27) в конце первого ряда – заурядное число, однако к концу среднего, четвертого, ряда оно достигло 2,1 млрд (231), а в конце последнего – около 9,2 квинтиллиона (9,2 × 1018) зерен.
Основной характеристикой экспоненциального роста является его стремительность, когда каждое новое увеличение значительно превосходит предыдущее: прибавки в последнем ряду шахматной доски в 256 раз больше, чем общее число, накопленное в конце предпоследнего, и составляет 99,61 % всех добавленных зерен. Очевидно, нежелательный экспоненциальный рост можно остановить – с тем или иным трудом – на ранних этапах, но по мере продолжения роста задача может быстро стать нерешаемой. Если предположить, что средняя масса рисового зернышка составляет 25 мг, их общее число (которое очевидно не сможет поместиться на шахматной доске) будет равняться 230 гигатоннам риса, что почти в 500 раз больше ежегодного мирового урожая, составившего в 2015 году немногим менее 500 мегатонн.
За длительные периоды даже ничтожная скорость роста даст невероятные результаты. Применять интервалы космического масштаба нет нужды – достаточно отсылки к Древнему миру. Когда Римская империя достигла своего апогея (во II веке н. э.), ей было необходимо собирать 12 Мт зерна (большая часть которого выращивалась в Египте и отправлялась в Италию), чтобы прокормить население размером около 60 млн человек (Garnsey, 1988; Erdkamp, 2005; Smil, 2010c). Если представить себе, что Римская империя существовала бы и по сегодняшний день, ее урожай зерна рос бы на 0,5 % в год и к 2015 году достиг бы 160 Гт, что более чем в 60 раз больше реально собранного в 2015 году мирового урожая зерна в размере 2,5 Гт, с помощью которого накормили 7 млрд человек.
Рис. 1.5. Годовой мировой рост потребления необработанной нефти, 1880–1970-е: экспоненциальный рост, отображенный на линейной и полулогарифмической шкале. По данным (Smil, 2017b
Линейная шкала плохо подходит для отображения экспоненциального роста, полная траектория которого часто охватывает величины в несколько порядков. Если попытаться вместить все значения на линейной оси y, их будет невозможно разобрать кроме самых больших порядков, и результатом всегда будет J-образная кривая с почти линейной частью сравнительно медленного прироста, за которым следует более или менее крутой подъем. Если же нанести значения постоянного экспоненциального роста на график в полулогарифмических координатах (с линейной осью x для времени и логарифмической осью у для растущего количественного значения), то можно получить идеально прямую линию, и значения будут легко читаться на оси y, даже когда рост охватывает значения нескольких порядков. Таким образом, составление графика в полулогарифмическом масштабе – простой способ определить, является ли некий набор данных результатом экспоненциального роста. На рис. 1.5 сравниваются два графика для подобного феномена: на нем отображается рост одной из основ современной цивилизации, почти идеально экспоненциальный рост мирового потребления нефти в период между 1880 и 1970 годами.
Коммерческое производство топлива началось в ничтожном масштабе всего в трех странах: России (с 1846 года), Канаде (с 1858 года) и США (с 1859 года). К 1875 году его объем составлял всего около 2 Мт, но с ростом добычи в США и России и выходом на рынок новых производителей (Румынии, Индонезии, Бирмы, Ирана) производство стало расти экспоненциально и к 1930 году достигло около 170 Мт. В результате экономического кризиса 1930-х годов в отрасли произошло короткое замедление, но ее экспоненциальный рост возобновился в 1945 году, и благодаря обнаружению гигантских месторождений на Ближнем Востоке и в России к середине 1970-х добыча возросла на три порядка (немногим больше чем в 1000 раз) за последние 100 лет.
Периоды экспоненциального роста встречаются и в современной экономике. Подобные явления характерны, в частности, для роста валового продукта в таких быстро развивающихся странах, как Япония, Южная Корея и Китай, после 1985 года. Они были связаны с объемом годовых продаж потребительской электроники, массовый спрос на которую создал новые глобальные рынки. На привлекательности временного экспоненциального роста воображаемых доходов строятся мошеннические инвестиционные схемы (пирамиды Понци): на ранних этапах развития таких моделей экспоненциальный рост можно остановить контролируемым образом, но внезапный коллапс роста, характерный для таких схем, всегда имеет нежелательные последствия. Развитие технического прогресса также часто бывает отмечено явными периодами экспоненциального роста, но впервые экспоненциальный рост (и его опасности) стал активно обсуждаться публикой в связи с ростом населения (Malthus, 1798).
Знаменитая работа «Очерк закона о народонаселении» Томаса Роберта Мальтуса напоминает труды Леонарда Эйлера, ведущего ученого XVIII века, покинувшего Швейцарию ради работы в России и Пруссии (Bacaër, 2011). В Берлине, после возвращения из России, Эйлер опубликовал – на латыни, в то время по-прежнему считавшейся стандартом языка научных работ, – «Введение в анализ бесконечно малых [величин]» (Euler, 1748). Одна из рассматриваемых в этой книге проблем связана с проходившей в 1747 году в Берлине переписью населения, в которой приняли участие 100 000 человек. Эйлер хотел узнать, каким будет население, растущее ежегодно на одну тридцатую (3,33 % в год), через 100 лет. Его ответ, полученный с помощью логарифмов, гласил, что оно вырастет более чем в 25 раз: поскольку Pn = P0(1 + r)n, результат за 100 лет составит 100 000 × (1 + 1/30)100, или 2 654 874. Затем Эйлер продемонстрировал, как рассчитывать годовой прирост населения и периоды удвоения.
Но именно Мальтус сделал вопрос экспоненциального роста основным для таких новых дисциплин, как демография и политэкономия. Его основной вывод о том, что «потенциал населения определенно больше потенциала земли, производящей пропитание для человека», так как безудержный рост населения будет происходить экспоненциально, а рост средств к существованию – линейно (Malthus 1798, 8), получил широкое хождение:
Если взять любой размер населения Земли, например, тысячу миллионов, количество людей будет увеличиваться по модели 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 и т. д., а пропитание – по модели 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 и т. д. Через два века с четвертью соотношение населения и средств пропитания будет 512 к 10, через три века – 4096 к 13, а через две тысячи лет разница будет почти неисчислимой, хотя сельскохозяйственная продукция к тому времени возрастет в огромной степени.
Чарльз Дарвин иллюстрировал процесс, ссылаясь на Мальтуса и Линнея и собственные расчеты последствий безудержного размножения слонов (Darwin, 1861, 63):
Не существует исключения из правила, что каждое органическое существо размножается с такой скоростью, что если не уничтожать его, то Земля вскоре покроется потомством одной пары. Даже число медленно размножающихся людей удвоилось за двадцать пять лет, и при такой скорости через несколько тысяч лет от их потомков будет не протолкнуться. Линней подсчитал, что если однолетнее растение дает всего два семени – а таких непродуктивных растений не существует – и выросшие из них растения снова дадут два семени и так далее, то через двадцать лет этих растений будет миллион. Слоны считаются самыми медленно размножающимися из животных, и мне было нелегко оценить вероятную минимальную скорость их естественного прироста: предположим, что они начинают размножаться в возрасте тридцати лет и продолжают до девяноста, производя на свет в этот период три пары детенышей. Если это так, то к концу пятого века будет существовать 5 млн слонов, являющихся потомками первой пары.