Математические игры с дурацкими рисунками (страница 4)
Рассмотрим вариант, где вначале на игровом поле всего одна точка. Первый игрок волей-неволей рисует петлю и ставит новую точку на ней. Второй игрок должен соединить две точки. Кажется, возможны два варианта: нарисовать линию внутри петли или снаружи.
Но погодите-ка. Представьте, что вы чертите линии на сфере. Особо ничего не меняется, но теперь неважно, рисуете ли вы вторую линию «внутри» или «снаружи». С точки зрения топологии эти два хода идентичны. Таким образом, в действительности у второго игрока нет выбора.
А как насчет игры, которая начинается с двух точек? У первого игрока есть лишь два варианта: соединить эти две точки или нарисовать петлю. Неважно, будет ли вторая точка «внутри» или «снаружи» петли. Топологически нет разницы.
Неужели топологи не замечают различий и все вещи для них на одно лицо? «Победа» топологически равноценна «поражению»? «Хорошо» топологически то же самое, что «плохо»? Кошка топологически эквивалентна рыбке и в аквариум нужно поставить маленький кошачий лоток?
Решайте сами, если у вас есть домашние питомцы. Но, играя в «Ростки», не стоит беспокоиться. Не все ходы эквивалентны. По сути дела, когда все начинается с двух точек, уже ко второму ходу возникает шесть топологически разных вариантов. Свободы становится все больше.
В «Точках-клеточках» мы имели дело с жесткой, прямолинейной геометрией, подобной градостроительному плану. «Ростки», напротив, свободолюбивая игра, похожая на хаос карнавального шествия.
ГЕНЕАЛОГИЯ ИГРЫ
Место и время рождения «Ростков» точно известны: Великобритания, Кембридж, вторая половина дня во вторник 21 февраля 1967 года.
Родители игры, кибернетик Майк Патерсон и математик Джон Конвей, рисовали закорючки на листе бумаги, пытаясь изобрести новую игру. Майк предложил правило с добавлением новой точки, Джон предложил название. Так родились «Ростки»[11]. Они поделили честь открытия в соотношении 60/40 в пользу Майка: эта честная и точная пропорция впечатляет не меньше, чем само рождение игры.
В «Ростки» просто играть, но сложно перебрать все варианты. Анализ игры, начинающейся с шести точек, занял у Дениса Моллисона 47 страниц. Никто не превысил эту планку до 1990 года, когда компьютер Bell Labs перебрал все варианты игры, начинающейся с 11 точек. На момент написания этой главы перебраны все варианты для игры, начинающейся с 40 точек, хотя Конвей перед кончиной в 2020 году скептически высказался на сей счет: «Вы поверите, услышав, что кто-то изобрел машину, которая может сочинить пьесу, достойную пера Шекспира? Это слишком сложно».
Отпугнула ли эта сложность игроков-любителей? Ничуть.
«На следующий день после того, как проросли "Ростки", – пишет Конвей, – в них стали играть все подряд. За чаем и кофе небольшие компании не могли взгляда оторвать от нелепых или фантастических вариантов развития игры… Общему поветрию поддались и секретари… Рисунки с "Ростками" можно было обнаружить в самых неожиданных местах… Даже мои дочки, которым три и четыре года, играли в них, хотя обычно я выигрывал».
ПОЧЕМУ ЭТА ИГРА ВАЖНА?
Потому что среди разделов современной математики топология – одна из наиболее (1) динамичных, (2) причудливых, (3) полезных и (4) красивых.
Эпитетов много, так что разберем их по порядку.
Топология динамична. Топологи живут в изменчивом мире растягивающейся резины, расплавленного металла и тающего мороженого. Они постоянно ищут инварианты: свойства, которые остаются неизменными, несмотря на все перипетии.
Наиболее известный инвариант – эйлерова характеристика. Для «Ростков» все сводится к простому уравнению (это заметил Эрик Соломон): точки + области = линии + фигуры.
Это уравнение верно на любом этапе игры для всех возможных сценариев, от простейшего до сложнейшего, независимо от того, начинаете ли вы с двух точек или с двух миллионов. В любой ситуации количество точек плюс количество замкнутых областей будет равно количеству линий, соединяющих точки, плюс количество отдельных фигур[12].
Это типично для топологии: в необузданно меняющемся мире мы находим стройные закономерности.
Топология причудлива. Вот забавное открытие Джона Конвея. Если количество ходов минимально, то в конце концов вы получите (грубо говоря) одну из этих фигур:
В классическом пособии «Выигрышные стратегии математических игр» объясняется, что окончательная конфигурация «будет представлять собой одно из этих насекомых (возможно, вывернутое наизнанку), к которому присосалось произвольное количество вшей (к некоторым вшам могут присосаться другие)».
В общем, вшей довольно много. Причем одни конфигурации, по замечанию Конвея, «вшивее» других.
Топология полезна. Несмотря на балаган с уховертками и вшами, топология помогает разобраться с самыми разными вещами, от запутанности ДНК до запутанности социальных сетей, не говоря уже о космологии и квантовой теории поля.
Рассмотрим знаменитую топологическую проблему: изоморфизм графов. Мы уже знаем, что две конфигурации в «Ростках» могут выглядеть по-разному, но быть структурно одинаковыми. Как определить, различаются ли две сети или они идентичны, хотя на первый взгляд непохожи?
Этот вопрос тревожит инженеров, сопоставляющих электрические схемы, компьютерщиков, кодирующих визуальную информацию, и химиков, ищущих соединения в базах данных. По сути дела, все эти серьезные люди играют в свои версии «Ростков».
Топология красива. Для многих знакомство с топологией начинается с ленты Мёбиуса. Возьмите полоску бумаги, перекрутите ее и склейте концы.
У ленты Мёбиуса всего одна поверхность: нет дихотомии «внутри» и «снаружи». Если вы решите использовать ее в качестве браслета и попытаетесь покрасить внутреннюю сторону в синий, а внешнюю в красный, ничего не получится. И это лишь одна из странностей. Что будет, если разрезать ленту Мёбиуса вдоль? А если попытаться разрезать ее на три части?
Математик Дэвид Ричесон в книге «Жемчужина Эйлера» подсчитал, сколько медалей Филдса (самая престижная награда в области математики) досталось топологам. «Из 48 лауреатов, – пишет он, – примерно треть были награждены за работы в области топологии, и еще больше – за вклад в тесно связанные с ней области».
Если красота – дочь сложности и простоты, то «Ростки» – настоящее дитя любви.
ВАРИАЦИИ И РОДСТВЕННЫЕ ИГРЫ
Сорняки. Автор – Владимир Игнатович. Игроки могут рисовать на своей линии одну точку, две или ни одной.
Набери очки. Автор – Уолтер Джорис. Правила те же, что в «Ростках», но ведется подсчет очков. Если в результате вашего хода образуется замкнутая область, пометьте ее инициалами или цветом и подсчитайте количество точек на границе области (одна точка – одно очко). Рисовать новые линии внутри этой области запрещено. Когда все ходы будут исчерпаны, побеждает тот, у кого больше очков[13].
Брюссельская капуста. Эта скверная сестра-близнец «Ростков» на первый взгляд кажется такой же многовариантной и требующей стратегического мышления. Но это не так. Скорее это не игра, а какая-то пародия.
Вначале нарисуйте несколько крестиков. Соединяйте любые два свободных конца и ставьте черточку на новой линии, чтобы получилось еще два свободных конца. Линии не должны пересекаться. Выигрывает тот, кто делает последний ход, когда больше ходов не осталось.
Почему пародия? Дело в том, что исход игры предрешен независимо от действий игроков. Если в начале было нечетное число крестиков, выигрывает первый игрок; если четное – второй. Можете выстраивать какие угодно хитроумные стратегические схемы, всем им грош цена. С тем же успехом можно воображать себя гонщиком «Формулы-1», вращая руль игрушечного автомобиля.
Как это получается? Обратите внимание на то, что количество свободных концов не меняется. Каждый ход уменьшает их на два, а новая черточка добавляет два. Меняется лишь количество областей. После каждого хода, за малым исключением, появляется новая область. В игре с n крестиками на n – 1 ходу нельзя создать ни одну область, соединяя несвязанные крестики.
Игра заканчивается, когда количество областей становится равно количеству свободных концов. Для этого требуется 4n – 1 ходов, создающих новые области, плюс n – 1 ход, не увеличивающий количество областей, то есть всего 5n – 2 хода.
Разыграйте приятеля: предложите сыграть на поле с двумя, четырьмя и шестью крестиками, каждый раз великодушно уступая право первого хода. Когда противник почует подвох и потребует, чтобы вы ходили первым, незаметно переключитесь на игру с тремя или пятью крестиками. Конечно, обманывать нехорошо, особенно друзей… Но пошутить-то можно.
Супер-крестики-нолики
ИГРА С ФРАКТАЛЬНОЙ СТРУКТУРОЙ
В 2013 году, узнав о существовании этой игры на пикнике математиков с нашего факультета, я написал краткий пост в своем блоге. Он вызвал настоящий ажиотаж в интернете, угодив в топ сайта Hacker News[14] и на главную страницу Reddit[15], а кроме того, породил целый букет приложений для смартфонов[16]. Поскольку взлет моей карьеры в немалой мере связан с этой игрой, я много размышлял о том, что делает ее особенной. Элегантность правил? Легкость измышления стратегических идей? Подсознательная ассоциация с «Суперфрисби»?
Но лишь спустя годы меня осенило – это фракталы. Странно, что я не додумался до этого раньше.
Мы живем среди фракталов, они всюду: от облаков до береговых линий и ветвей деревьев. Возможно, именно поэтому «Супер-крестики-нолики» кажутся такими естественными. Обычные крестики-нолики всегда стремились эволюционировать в этом направлении.
КАК ИГРАТЬ
Сколько игроков? Двое.
Что потребуется? Карандаши и бумага. Нарисуйте крупно поле для крестиков-ноликов, а затем по одному мини-полю внутри каждого квадрата.
В чем цель? Выиграть на трех мини-полях, выстроенных в одну линию.
Какие правила?
1. По очереди ставьте крестик или нолик в маленьких квадратах. Первый ход можно сделать где угодно; после этого мини-поле, на котором вы будете играть, определяется предыдущим ходом противника. В зависимости от клеточки, которую он выбрал, вы должны сделать ход на определенном мини-поле.
2. Поставив три крестика или нолика на одной прямой на мини-поле, вы выигрываете там. Это мини-поле замораживается, а игрок, которому выпадает ход на нем, выбирает любое другое.
3. Побеждает тот, кто выиграет на трех мини-полях на одной линии.
Альтернативные условия победы перечислены в разделе «Вариации и родственные игры».
ЗАМЕТКИ ДЕГУСТАТОРА
Однажды майским днем 2018 года я заглянул на сайт политических новостей FiveThirtyEight и с удивлением прочел: «Трамп играет не в трехмерные шахматы, а в "Супер-крестики-нолики"», – гласил заголовок статьи Олли Рейдера.
В те годы многие из нас пытались понять действия президента Трампа. Он ввязывался то в одну, то в другую политическую авантюру, непредсказуемо меняя повестку дня. Что это было: продуманный план или просто импульсивность? «Он не игрок в трехмерные шахматы», – часто язвили критики.