Ландшафты мозга (страница 4)

Страница 4

Но некоторые карты могут обновляться. Представьте себе карту на приборном экране автомобиля или мобильного телефона. Компьютерные карты могут обновляться и включать в себя информацию о новых торговых центрах или закрытых на ремонт съездах с шоссе. В этих картах используется технология GPS, определяющая наше теперешнее положение в пространстве. Таким образом, наша динамическая компьютерная карта обновляется по мере передвижения. Когда мы движемся к северу, карта на экране тоже движется на север, и мы всегда видим ориентиры, находящиеся в непосредственной близости от нас. Такая карта полностью сбивала бы с толку вне контекста нашего путешествия и в отрыве от знакомой и важнейшей реперной точки – нас самих. Но хотя совмещенный с GPS экран постоянно изменяется или обновляется по мере передвижения, он по-прежнему остается картой. И поскольку на нем есть точка отсчета (наше теперешнее положение в пространстве), мы без труда понимаем эту динамическую карту.

Карта области V1 тоже динамическая. Когда мы перемещаемся из одной точки в другую, обводим глазами пространство или когда движутся окружающие нас предметы, информация на карте обновляется. Но, как и в случае с экраном навигатора, изменение информации, отображаемое в зоне V1, не дезориентирует нас, поскольку оно тоже привязано к знакомой и важной точке отсчета: положению нашего тела и направлению взгляда.

Каким бы странным это ни казалось, карты могут быть сделаны из клеток мозга и могут обновляться и изменяться. Но понять концепцию карт мозга непросто еще вот почему. Даже карту, нарисованную на запотевшем стекле или прочерченную на песке, можно увидеть. Но карта V1 не подсвечивается синим светом, когда мы любуемся океаном, и не разделяется на темные квадраты, когда мы смотрим на шахматную доску. Разве карта не должна быть такой, чтобы мы могли ее видеть?

Ответ на этот вопрос отрицательный. Чтобы понять, почему это так, давайте рассмотрим один короткий мысленный эксперимент из истории разведки. Хотя мы привыкли думать, что шифры и шпионские сообщения являются современным изобретением, невидимые чернила применяются для передачи секретной информации уже на протяжении сотен лет. Во время американской революции Джордж Вашингтон и его шпионы использовали невидимые чернила, изготовленные по специальному рецепту; такие чернила можно было увидеть только при контрастном окрашивании[3]. Написанные ими разведывательные данные, а также планы и, вполне возможно, карты, начерченные невидимыми чернилами, передавались незамеченными и изменили ход войны.

Представьте себе, что один из шпионов Вашингтона использовал такие чернила для зарисовки плана оккупированного Нью-Йорка, отметив места сосредоточения британских войск. Была ли такая невидимая карта настоящей картой? Конечно, да. И Джордж Вашингтон смог бы подтвердить это, обработав бумагу контрастной краской, чтобы чернила стали видимыми. Информация на карте при нанесении красителя не изменилась. Карта отражала план города Нью-Йорка до и после того, как стала видимой невооруженным глазом.

Эта сказка о невидимых чернилах Вашингтона вызывает интересный вопрос: нельзя ли нанести на карту V1 контрастную краску и сделать ее видимой? В 1988 году группа специалистов, занимающихся зрением, проделала именно это и продемонстрировала карту области V1 макаки[4]. Как человек и другие приматы, макаки в значительной степени ориентируются с помощью зрения и имеют карты V1, аналогичные нашим картам.

В этом эксперименте обезьяны смотрели на изображение, вспыхивающее на мониторе компьютера, а им в кровь в это время вводили похожее на сахар вещество, но только с радиоактивной меткой. Наиболее активные нейроны в области V1 захватывали радиоактивное вещество (по той причине, что активно возбуждающиеся нейроны требуют больше энергии). Далее обезьян усыпляли, так что у них переставало биться сердце, и после этого ученые вводили в ткани мозга консерванты, вынимали мозг из черепа и отделяли зрительную кору от остальных частей мозга. Они разравнивали V1, так что она превращалась в плоский лист, замораживали ее и делали срезы с помощью замороженного лезвия. Затем они клали на замороженные срезы рентгеновскую пленку и оставляли на срок от двух недель до трех месяцев, до проявления. Ученые обнаружили удивительные изображения того, что видели обезьяны за несколько недель или месяцев до смерти. Один пример показан на рис. 3: слева изображено то, на что смотрела обезьяна, а справа – картина активности на карте V1, которую удалось визуализировать на срезе мозга животного.

Рис. 3. Соответствие между изображением в правой части поля зрения (слева) и отображением этой информации в виде активности левой половины зоны V1 зрительной карты мозга (фотография среза мозга справа). Источник: The Journal of Neuroscience, vol. 8, no. 5. Copyright © 1988 by the Society for Neuroscience.

Подобно тому, как генерал Вашингтон использовал контрастный краситель, чтобы сделать видимыми полученные им письма и планы, ученые смогли сделать видимой карту V1 путем обработки, развертывания, замораживания и проявки мозга. Иными словами, да, мы можем открыть мозг и увидеть карту в области V1, но это сложно. Новые технологии дали нам более простые способы визуализации карт мозга. Вообще говоря, для этого подходит любой метод, который может превратить возбуждение нейронов в свет в видимом диапазоне длин волн.

Даже беглый взгляд на эти изображения позволяет выявить очевидное несоответствие: картинка в мозге достаточно сильно отличается от изображения на экране. И это не ошибка. Активность нейронов в области V1 мозга обезьяны не является некачественным отображением того, что видела обезьяна перед смертью. Карта области V1 очень сильно искажена. Маркерные точки на рис. 4 показывают, как именно. Вертикальная прямая линия в левой части исходного рисунка в мозге растягивается в широкую С-образную полосу, тогда как ровный полукруг в правой части исходного рисунка уплощается и даже слегка инвертируется. Рисунок переворачивается, так что верхняя часть экрана оказывается в нижней части карты V1. Но это еще не все: что-то не так с отображением концентрических окружностей, так что самый маленький полукруг занимает слишком много места. Именно эти аномалии обнаружил Иноуэ более ста лет назад.

Рис. 4. Маркерные точки на видимом изображении (слева) и на соответствующей карте активности в зрительной области V1 в мозге обезьяны (справа) показывают, каким образом инвертировано и искривлено изображение на карте V1. Источник: Paul Kim, The Journal of Neuroscience, vol. 8, no. 5. (с модификациями). Copyright © 1988 by the Society for Neuroscience.

Благодаря работам Иноуэ и нескольких других ученых до и после него было обнаружено неизвестное ранее место, где происходит зрительное восприятие. Этот участок спрятан в складках задней части нашего мозга. Он содержит нейронную карту, которая отображает зрительную информацию при помощи электричества и времени. На рис. 5 показано, где спрятана область V1 и как выглядит на ней зрительное изображение. Именно эту карту продырявили пули у пациентов Иноуэ, оставив прорехи в поле зрения, хотя оба глаза у них функционировали нормально.

Существование такой карты в нашем мозге может показаться странным и неправдоподобным. Однако такие карты, как V1, являются не исключением, а правилом. Мозг больших и маленьких существ переполнен подобными картами. В последующих главах мы поговорим об их замечательном разнообразии и о том, как их особенности и искривления формируют наши мысли и опыт. Но сначала нужно ответить на важнейший вопрос: зачем мозгу столько карт? Ответ можно найти в устройстве электронных приборов и в эволюции, и связан он со столь разными темами, как голодный мозг и фантастическая способность примитивного пустынного муравья ориентироваться в пространстве. Вы увидите, что на самом деле невероятной является наша способность вообще что-либо видеть. Такие зрительные карты, как в области V1, являются решением проблемы, о существовании которой вы никогда даже не подозревали. Они уникальным образом обеспечивают нас зрением и другими чувствами в мире голода, дефицита и хищничества.

Рис. 5. Отображение зрительной информации в левой и правой частях зрительной карты V1 у человека. Художник Пол Ким.

2
Тирания чисел: зачем нужны карты мозга?

Инженеров из Лаборатории Белла не интересовал мозг. Их интересовало создание полезных устройств. Однако в конце 1950-х годов Лаборатория Белла и зарождавшаяся электронная промышленность столкнулись с той же проблемой, которая на миллионы лет затормозила эволюцию мозга и сделала карты мозга биологическим императивом.

Тогдашний вице-президент Лаборатории Белла дал проблеме название: тирания чисел[5]. Электрические устройства функционируют благодаря внутренним электрическим компонентам, которые обеспечивают их главные функции. Потребители хотели иметь более мощные и многофункциональные устройства, чтобы один и тот же аппарат мог выполнять несколько функций. И поэтому инженеры пытались создавать новые устройства, состоящие из огромного количества деталей. Непросто придумать, как упаковать миллион деталей внутри устройства разумного размера. Но добавление деталей влечет за собой и еще более сложную проблему: при присоединении каждого нового элемента инженер должен встроить массу новых проводов, соединяющих его с другими элементами устройства. Эту проблему и назвали тиранией чисел. Повышение мощности и функциональности устройства требовало дополнительных элементов, но чем больше элементов, тем больше проводов, а это повышало стоимость производства и увеличивало размер устройства.

Результат? Неуклюжие машины из чудовищного набора деталей.

Решение проблемы тирании чисел пришло из другой сферы. Его предложил Джек Килби из компании “Тексас инструментс”: он придумал интегральную схему, позволявшую инженерам включить множество элементов в единственную деталь из германия, что очень сильно сократило количество проводов. Роберт Нойс из компании “Фэйрчайлд семикондактор” в Маунтин-Вью в Калифорнии изобрел кремниевую версию интегральной схемы, которая заложила основы и дала название Силиконовой долине в том виде, в котором мы знаем ее сегодня. Интегральные схемы позволили включать в устройство больше элементов. Эти инновации положили начало современной эре электроники и позволили создавать мощные многофункциональные мобильные устройства, определяющие нашу современную жизнь.

Однако тирания чисел не исчезла полностью. Перенеситесь в сегодняшний день и подумайте о мобильном телефоне, который наверняка сопровождает вас повсюду. Многие мобильные телефоны являются многофункциональными: это одновременно телефон, фотокамера и плейер, на нем можно слушать музыку, смотреть фильмы и играть в видеоигры. Чипы современных мобильных телефонов содержат миллиарды транзисторов и многочисленные элементы, позволяющие им осуществлять столь разные функции. Но при этом мобильные телефоны должны быть легкими и достаточно компактными, чтобы помещаться в карман или сумочку. Эти конфликтующие факторы – больше функций в меньшем объеме – будут оставаться источником головной боли (и рабочих мест) для инженеров еще долгое время.

Многие аспекты процесса создания современных мобильных телефонов связаны с вопросами, в равной степени относящимися и к головному мозгу. Какими свойствами должен обладать конечный продукт, чтобы быть функциональным, обрабатывать большие объемы информации и быстро решать задачи? Для чего служит каждая деталь устройства и как эти детали должны быть связаны друг с другом? Сколько будет стоить создание такого аппарата? Насколько компактным и легким должен быть конечный продукт?

В отличие от устройств, тщательно разработанных инженерами, структура мозга и его функции формировались на протяжении многих поколений за счет естественного отбора. Никто сознательно не подбирал критерии для построения мозга; на протяжении многих поколений генетические мутации, воспроизведение и смерть совместными усилиями оптимизировали структуру мозга живых существ методом проб и ошибок. И все же проще понять компромиссы в эволюции мозга, если рассматривать этот процесс как инженерную задачу. Что нужно, чтобы сконструировать мозг? Ответ зависит от того, что этот мозг должен уметь делать.

[3] Washington and his spies / Nagy J.A. George Washington’s Secret Spy War: The Making of America’s First Spymaster. New York: St. Martin’s Press, 2016.
[4] Tootell R. et al. Functional Anatomy of Macaque Striate Cortex: II. Retinotopic Organization. Journal of Neuroscience. 8 (1988): 153–68.
[5] Gertner J. The Idea Factory: Bell Labs and the Great Age of American Innovation. New York: Penguin, 2012; Thackaray A., Brock D.C., Jones R. Moore’s Law: The Life of Gordon Moore, Silicon Valley’s Quiet Revolutionary. New York: Basic Books, 2015; Malone M.S. The Intel Trinity: How Robert Noyce, Gordon Moore, and Andy Grove Built the World’s Most Important Company. New York: HarperCollins, 2014.