Искусство большего. Как математика создала цивилизацию (страница 4)

Страница 4

Вот другой пример: какое из чисел – 1, 2, 19 или 21 – ближе к сумме 12/13 и 7/8? Три четверти 12- и 13-летних американских школьников дают неверный ответ[21]. Самая распространенная ошибка – складывать числители и знаменатели (верхние и нижние числа) по отдельности, то есть обращаться с ними как с натуральными числами. Удивляться здесь нечему, ведь именно этому вас и учили до сих пор. Вместо этого вам нужно либо давать этим числам приблизительную оценку (и 12/13, и 7/8 близки к 1, поэтому их сумма будет близка к 2), либо приводить дроби к общему знаменателю и затем складывать друг с другом скорректированные числители. Стоит задуматься об этом, как дроби сразу кажутся чем-то жутким и беспощадным. Мы уже знаем, что умение работать с натуральными числами далось человечеству большими стараниями, но в случае с дробями все эти навыки приходится отправлять на помойку[22].

Сколько бы сложностей с ними ни возникало, цивилизация за цивилизацией понимала, что дроби стоят того, чтобы над ними попотеть. Вавилоняне осознали это первыми, около 2000 года до нашей эры, а за ними последовали древние египтяне, индусы, греки и китайцы. А это значит, если я не ошибся в расчетах, что вид, который живет на Земле уже 300 тысяч лет, применяет дроби (по очень грубой оценке) на протяжении лишь последней сотой части своего существования. Если вы еще не убедились в том, что даже в базовой математике нет ничего естественного и безусловного, то вот вам доказательство.

Дело в том, что ведение учета невозможно без двух других математических инноваций: отрицательных чисел и понятия нуля. И хотя сегодня они общеприняты и кажутся простыми, обе идеи поначалу вызывали споры, а потому сегодняшнее положение они смогли занять лишь через несколько сотен лет после своего появления.

Необходимость в отрицательных числах

Странно понимать, что мы тысячелетиями производили вычитание, хотя никто не мог ответить на вопрос “Сколько будет 1 минус 2?”. Но виноват в этом опять же наш мозг. Мы просто не можем представить себе минус одно яблоко, поэтому нам нечего и надеяться на врожденное понимание отрицательных чисел. Они стали еще одним огромным скачком, еще одной концепцией, которую человеку пришлось создать с нуля. Однако, как и дроби, отрицательные числа оказались слишком полезными, чтобы их не изобрести.

История у отрицательных чисел получилась весьма запутанной. Трактат “Артхашастра”, составленный древнеиндийским учителем Каутильей, вероятно, около 300 года до нашей эры, свидетельствует, что бухгалтерское дело в Индии было в то время уже достаточно развито: индусам были знакомы понятия активов, долга, выручки, расходов и доходов, и есть основания предположить, что индийские счетоводы, возможно, уже тогда обозначали долги отрицательными числами. В сочинении “Математика в девяти книгах” китайский математик Чжан Цан проводил расчеты с отрицательными числами. Мы точно не знаем, когда оно было написано – вероятнее всего, между 200 годом до нашей эры и 50 годом нашей эры, – но в нем говорится, что красные палочки обозначают положительные числа, а черные палочки соответствуют отрицательным числам. Однако, несмотря на применение отрицательных чисел в арифметике, Чжан Цан не мог смириться с тем, что их можно получать и при таких операциях, как решение уравнений. Судя по всему, в его представлении они были чисто практическим инструментом коммерции и торговли.

В 628 году нашей эры индийский математик Брахмагупта также предлагал выражать долг отрицательными числами. Он даже представил правила умножения (произведение) и деления (частное) при работе с положительными числами (достатками) и отрицательными числами (долгами):

Произведение или частное двух достатков – один достаток.

Произведение или частное двух долгов – один достаток.

Произведение или частное одного долга и одного достатка – долг.

Произведение или частное одного достатка и одного долга – долг.

Выражаясь современным языком, мы сказали бы:

При умножении или делении двух положительных чисел получается положительное число.

При умножении или делении двух отрицательных чисел получается положительное число.

При умножении или делении отрицательного числа на положительное число получается отрицательное число.

При умножении или делении положительного числа на отрицательное число получается отрицательное число.

Возможно, эти правила знакомы вам в другой формулировке: “Минус на минус дает плюс, а плюс на минус дает минус”.

Очевидно, к этому моменту индийские счетоводы уже свободно обращались с отрицательными числами. Но в западном мире прогресс шел гораздо медленнее. Проблема была в том, что Запад унаследовал математику от древних греков, а те обожали целые числа. Они могли делить их, получая дроби, но, какими бы маленькими ни становились числа, они никогда не оказывались отрицательными.

Первое осторожное упоминание отрицательных чисел в западном мире было сделано в “Книге абака”, написанной в 1202 году. Вам, возможно, знакомо имя ее автора – Фибоначчи. На самом деле его звали иначе, а это прозвище ему придумал биограф несколько столетий спустя. Но Леонардо Пизанский действительно был сыном Гильермо Боначчи (отсюда и “фи” – сын – Боначчи), и прозвище так прочно прикрепилось к нему, что сейчас именно оно считается одним из величайших имен в математике.

На заре своей карьеры Фибоначчи служил на итальянской таможне и работал в Алжире. Сопровождая отца в поездках в такие страны, как Сирия и Египет, он рано познакомился с математикой, выходящей за итальянскую традицию, и узнал множество операций и идей, которые казались радикальными, революционными, а иногда просто полезными. В “Книге абака” содержится немало математических изобретений, задач, решений и курьезов, включая правила (основанные на темпе бесконтрольного увеличения популяции кроликов) составления числовой последовательности, которая теперь носит имя Фибоначчи[23]. Но также в книге рассматривалось использование отрицательных чисел как общепризнанного математического инструмента. В качестве примера Фибоначчи предложил задачу, в которой четыре человека в заданных пропорциях делят деньги из кошелька:

есть четыре человека; у первого с кошельком вдвое больше второго и третьего, у второго с кошельком втрое больше третьего и четвертого, у третьего с кошельком вчетверо больше четвертого и первого. У четвертого с кошельком впятеро больше первого и второго…

Обозначив четырех мужчин буквами от A до D, а кошелек – буквой P, получим такую “систему уравнений”:

A + P = 2 (B + C)

B + P = 3 (C + D)

C + P = 4 (D + A)

D + P = 5 (A + D)

Эти уравнения устанавливают числовые отношения между всеми неизвестными, и Фибоначчи утверждает, что задача имеет целый ряд решений, но минимальные значения таковы: “У второго – 4, у третьего – 1, у четвертого – 4, в кошельке – 11, а дебет первого – 1”. Любопытно, что здесь появляется понятие “дебет”. Фибоначчи подчеркивает, что “задача не имеет решения, если не допустить, что у первого человека может быть дебет”, и показывает, что наличие дебета предполагает осуществление арифметических действий с отрицательными числами.

Хотя, написав книгу, Фибоначчи сумел распространить некоторые математические идеи в европейской среде, с отрицательными числами у него почти ничего не вышло. Запад не принимал их еще несколько сотен лет. Так, французский математик Блез Паскаль полагал, что, если вычесть 4 из 0, получится 0, – и презрительно отзывался обо всех, кто считал иначе. В своих “Мыслях” он сказал: “Я знаю людей, которые не могут понять, что если от нуля отнять четыре, останется ноль”[24]. И это в середине XVII века, в эпоху микроскопов, телескопов, законов Ньютона и электричества. Даже в период научных открытий и появления технологических инноваций некоторые из лучших западных умов не желали признавать существование отрицательных чисел.

Ситуация начала меняться, лишь когда Джон Валлис, Савильский профессор геометрии Оксфордского университета, понял, что людям думается проще, когда они могут представить картину происходящего. В 1685 году он опубликовал “Трактат по алгебре”, в котором выстроил числа в ряд и позволил им уйти в отрицательную область. Он отметил, что в абстрактной форме осознать это сложно. Но если представить какую-нибудь физическую величину, например расстояние, все сразу станет понятно. Разумеется, он выразился несколько иначе. Вот его слова:

Нельзя, однако, сказать, что гипотеза (об отрицательных числах) бесполезна или абсурдна, если правильно ее трактовать. Хотя в чисто алгебраической записи она добавляет величину, которая меньше нуля, в физическом приложении она обозначает величину столь же реальную, как если бы знаком ее был +, только трактуемую в противоположном смысле[25].

Иными словами, это положительное число наоборот. По сути, так бы сказали и мы. В качестве “физического приложения” он измеряет расстояние по прямой от заданной точки, а затем обратно – и дальше. Он спрашивает, как далеко от стартовой позиции окажется человек, если отойдет на 5 ярдов от точки A, а затем вернется на 8 ярдов назад. Он получает ответ –3, который, несомненно, дали бы и вы.

Числовая прямая Джона Валлиса

Любопытно читать длинное объяснение, сопровождающее утверждение Валлиса. “Получается, что он прошел на три ярда меньше, чем ничего”, – говорит он и пускается в рассуждения, всячески разжевывая свою мысль. Если сегодня для ответа достаточно было бы поставить галочку в нужной клетке детского задачника, то Валлис прикладывает немало усилий, чтобы разложить все по полочкам, и еще на целых 17 строк расписывает значимость ответа –3. Он явно понимал, насколько радикальна его мысль.

Сегодня знак минуса кажется нам лишь камешком в гигантской пирамиде математических инструментов. Мы настолько привыкли к нему и так хорошо понимаем его смысл, что теперь нам сложно увидеть в нем принципиальную инновацию. Признание существования отрицательных чисел не только дало нам способ подсчитывать долги, но и позволило простым и естественным образом математически описывать множество различных явлений. К примеру, физические силы: работая с положительными и отрицательными числами, мы можем прогнозировать дальность полета артиллерийских снарядов с учетом гравитации. Мы также можем возводить крепкие, устойчивые архитектурные сооружения, в которых будут сбалансированы все силы и нагрузки. Всякий раз, когда друг другу противостоят две вещи – космический корабль и сила тяготения, доход и расход, ветер в парусах и сопротивление океана, которое судну приходится преодолевать, рассекая волны, – отрицательные числа упрощают расчеты.

Однако, несмотря на силу отрицательных чисел, одни они не могли подарить нам современный мир. Возможно, вы заметили, что на числовой прямой Валлиса нет чисел – есть лишь отрезки, отмеченные буквами A, B, C и D. Буквы соответствуют тому, что мы обозначили бы числами 0, 5, 3 и –3, и Валлис неспроста решил отказаться от них. Еще один важнейший математический инструмент – ноль – пока не получил признания.

Значимое ничто

История нуля восходит к моменту, когда царь Шульги ввел в своем математическом государстве “позиционную систему счисления”. Мы очень быстро усваиваем, что, записывая число, такое как 1234, мы можем присваивать отдельным цифрам разные значения в зависимости от того, какую позицию они занимают. Низшую позицию здесь занимает цифра 4, которая обозначает четыре элемента, например четыре яблока. Если выражаться математическим языком, наша система имеет основание 10 и называется десятичной, поскольку мы группируем числа в десятки, и потому цифра в следующей позиции обозначает три десятка, то есть 30. Двигаясь дальше влево, мы получаем результат умножения предыдущей позиции на десять, то есть десять десятков, или сотню. В числе 1234 их две. Наконец, остается одна группа из десяти сотен, то есть тысяча. В итоге получается число 1234.

[21] McNamara J., Shaughnessy M. M. Student errors: what can they tell us about what students DO Understand? Math Solutions, 2011.
[22] Ответ на первый вопрос: 2/7, 1/2, 5/9. Ответ на второй вопрос: 2. Прийти к ним можно либо путем аппроксимации (и 12/13, и 7/8 близки к 1, поэтому их сумма близка к 2), либо путем приведения дробей к общему знаменателю. Превратим 12/13 в 96/104, умножив числитель и знаменатель на 8. Затем превратим 7/8 в 91/104, умножив числитель и знаменатель на 13. Сложим числители. 96 + 91 = 187, а значит, в сумме дроби дают 187/104. Это приблизительно 1,8, что ближе всего к 2.
[23] Последовательность Фибоначчи начинается с 0 и 1, а каждое следующее число в ней получается путем сложения двух предыдущих. Первые 12 чисел таковы: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и 89.
[24] Pascal B. Pensées, www.gutenberg.org/files/18269/18269-h/18269-h.htm. Перевод Ю. Гинзбург.
[25] Wallis J. A Treatise of Algebra, Both Historical and Practical. Philosophical Transactions of the Royal Society of London. 15, no. 173 (1685): 1095–1106.