Сьюзи Шихи: Принцип эксперимента

- Название: Принцип эксперимента
- Автор: Сьюзи Шихи
- Серия: Научпоп для начинающих
- Жанр: Физика и математика
- Теги: Законы природы, История науки, Научные открытия, Физическая картина мира, Философия науки, Элементарные частицы
- Год: 2024
Содержание книги "Принцип эксперимента"
На странице можно читать онлайн книгу Принцип эксперимента Сьюзи Шихи. Жанр книги: Физика и математика. Также вас могут заинтересовать другие книги автора, которые вы захотите прочитать онлайн без регистрации и подписок. Ниже представлена аннотация и текст издания.
Перед вами – история экспериментов и открытий физики элементарных частиц, физики ХХ века. Вы узнаете, какой путь проделал пытливый и критически настроенный ум ученых от обнаружения частиц, волн и лучей, до создания и использования сложнейших современных приборов и технологий.
Автор рассказывает нам, как через десятки версий и сотни экспериментов шли к грандиозным научным результатам Нильс Бор, Пьер и Мария Кюри, Роберт Уилсон и Питер Хиггс, Эйнштейн и Резерфорд, как изучалось строение атома и квант света, были созданы электронно-лучевая трубка и ускорители частиц, построен большой адронный коллайдер и проектируются приборы, которые приведут науку к новым открытиям. Все это неоспоримо свидетельствует о том, что именно научные исследования и эксперименты делают наш мир таким, какой он есть.
Онлайн читать бесплатно Принцип эксперимента
Принцип эксперимента - читать книгу онлайн бесплатно, автор Сьюзи Шихи
The Matter of Everything: How Curiosity, Physics, and Improbable Experiments Changed the World by Suzie Sheehy
Copyright: © Suzie Sheehy, 2022 This edition is published by arrangement with Aitken Alexander Associates Ltd. and The Van Lear Agency LLC
© Сысоева И., перевод на русский язык, 2024
© Оформление. ООО «Издательство «Эксмо», 2024
Вступление
Несколько лет назад я сидела за ноутбуком, хмурясь над, казалось бы, простым вопросом, который мне только что задали четыре профессора кафедры физики элементарных частиц Оксфордского университета. Я не запомнила их имена не только из-за нервов, но и потому, что мое собеседование для поступления в докторантуру проводилось через нестабильное интернет-соединение из номера мотеля в глубинке Австралии. Они спросили меня: «Чем вас так увлекает физика элементарных частиц?»
Это, конечно, была уловка: вступительные собеседования в Оксфорд, как известно, очень трудные. Тогда я решила, что лучше быть честной. Я сказала им о моем удивлении тому, как физика, кажется, может описать все: от мельчайших субатомных частиц и атомов, из которых состоят наши тела, до необъятных пространств Вселенной – и как все это связано.
«Физика элементарных частиц, – сказала я, – вот основа всего».
Пятью годами ранее я училась на инженера-строителя в Мельбурнском университете. Я тогда даже не рассматривала возможность стать физиком: хотя мне и нравилась физика в школе, я всегда думала, что она ведет лишь к карьере инженера. Но все переменилось, когда мои одногруппники пригласили меня на ежегодное мероприятие студенческого общества физиков – астролагерь.
В пятницу после полудня мы покинули Мельбурн и через два часа прибыли на площадку Leon Mow Dark Sky. Ухабистая грунтовая дорога привела нас к зданию с жестяной крышей, где мы распаковали пиво и телескопы, а затем установили палатки рядом с большой поляной. С наступлением сумерек воздух становился все прохладнее, а стрекот цикад наполнял округу. Чтобы видеть ночью, я резинкой закрепила на фонарике кусок красного целлофана. Забравшись в спальный мешок, я еще раз порадовалась тому, что он защищает не только от ночной прохлады, но и от насекомых. Вдохнув знакомый аромат эвкалипта, я подняла глаза.
«Вот один!» – закричал кто-то неподалеку, когда метеор пронесся по небу. Когда мои глаза привыкли к темноте, открылось истинное чудо этого места, называемого «заповедником темного неба». Болтовня перешла в шепот, но и тот вскоре стих. Венера медленно опускалась за горизонт, и в поле зрения появились другие планеты. Той ночью я получила представление о медленной, но постоянно меняющейся природе ночного неба. В телескопы моих друзей я увидела величественные кольца Сатурна, знакомые по фотографиям, но странно новые через объектив, звезды, формирующиеся в туманностях, полных светящейся пыли и шаровых скоплений, которые вращаются вокруг нашей галактики в 100 тысяч световых лет от нас.
Самым захватывающим зрелищем была яркая полоса звезд и пыли – сияющая дуга Млечного Пути. С Южного полушария мы смотрим в середину нашей дискообразной галактики. Мы находимся на расстоянии примерно в две трети радиуса от центра, вращаемся вокруг нашей звезды, которая сама движется внутри Млечного Пути. А он курсирует в космосе вместе со своей местной группой галактик со скоростью около 600 километров в секунду. И за ним – еще миллиарды других подобных галактик, звезд и туманностей, черных дыр и квазаров, материи, образованной из энергии, сформировавшейся в безграничном пространстве-времени.
В тот миг я по-настоящему осознала, насколько я мала, насколько недолговечна – и как невероятно сложно выразить словами масштаб того, что я видела. Звезды и планеты не где-то там наверху, а я не где-то внизу: все это часть одной огромной физической системы, называемой Вселенной. Я тоже ее часть. Конечно, я уже знала это, но никогда прежде настолько не чувствовала своего в ней места.
Внезапно все остальное перестало иметь значение. Я хотела больше узнать о гравитации, частицах, темной материи и теории относительности. О звездах, атомах, свете и энергии. И прежде всего – то, как все это связано и как я сама связана с этим. Я хотела узнать, правда ли есть теория всего. Я глубоко чувствовала, что это важно для меня как для человека, что понять это – достаточно большая цель, и если мне удастся понять хотя бы немного, я не потрачу впустую то мгновение, в течение которого существую как сознательное существо. Я решила стать физиком.
Цель физики – понять, как ведет себя Вселенная и все, что в ней есть. Один из способов это сделать – задавать вопросы, и по мере моего знакомства с физикой я понимала, что вопрос, который лежит в основе, звучит так: «Что такое материя и как она работает, создавая все вокруг, включая нас самих?» Полагаю, я пыталась понять смысл собственного существования. Но вместо того чтобы изучать философию, я выбрала более косвенный способ: попыталась понять саму Вселенную.
Люди задавали вопросы о природе материи на протяжении тысячелетий, но только за последние 120 лет это любопытство наконец привело нас к некоторым ответам. Сегодня наше понимание мельчайших составляющих природы и сил, которые ими управляют, описывается физикой элементарных частиц – одной из самых впечатляющих, сложных и творческих областей, которыми когда-либо занимался человек. Сегодня мы обладаем глубокими знаниями о физической материи Вселенной и о том, как она работает. Мы обнаружили, что реальность обладает богатством и сложностью, которые люди всего несколько поколений назад и представить себе не могли. Мы отвергли идею, что атом – мельчайшая частица нашего мира, открыв фундаментальные частицы, не играющие никакой роли в обычной материи, но необходимые по расчетам математики, которая – несколько чудесным образом – описывает нашу реальность. Всего за несколько десятилетий мы научились собирать все эти фрагменты воедино – от взрыва энергии в начале Вселенной до самых точных измерений.
Наш взгляд на мельчайшие составляющие природы быстро менялся на протяжении последних 120 лет – от радиоактивности и электрона до атомного ядра и ядерной физики, наряду с развитием квантовой механики (которая описывает природу в мельчайших масштабах). В ХХ веке это стали называть «физикой высоких энергий», фокус сместился с атомного ядра на обнаруженные новые частицы. Сегодня изучение всех многочисленных частиц и того, как они формируются, ведут себя и трансформируются, просто называется физикой элементарных частиц.
Стандартная модель физики элементарных частиц классифицирует все известные частицы в природе и силы, с помощью которых они взаимодействуют. Эта модель разрабатывалась многими физиками на протяжении десятилетий, а наша нынешняя версия появилась в 1970-х годах. Эта теория – абсолютный триумф: математически элегантная и невероятно точная, но при этом компактная, как принт на кружке. Студенткой меня невероятно увлекало то, насколько полно Стандартная модель, казалось, описывает работу природы на фундаментальном уровне.
Стандартная модель говорит нам, что вся материя, составляющая наше повседневное существование, состоит всего из трех частиц. Мы состоим из двух типов кварков, «верхних» и «нижних», которые формируют наши протоны и нейтроны. Эти два типа кварков вместе с электронами составляют атомы, удерживаемые вместе силами электромагнетизма и сильным и слабым ядерным взаимодействием. Вот и все! Это мы и все, что нас окружает[1]. Но, несмотря на то что мы состоим всего лишь из кварков и электронов, мы – люди – каким-то образом поняли, что в природе есть нечто большее.
Мы достигли триумфа не только благодаря концептуальным и теоретическим успехам. Стереотип о гении-одиночке, теоретизирующем за письменным столом, в значительной степени неверен. На протяжении более чем столетия такие вопросы, как «Что находится внутри атома?», «Какова природа света?» и «Как эволюционирует Вселенная?», рассматривались физиками сугубо практическим образом. Причина, по которой мы можем сегодня сказать, что наверняка знаем ответы на эти вопросы и что наши теоретические модели отражают реальность, заключается не в том, что наши расчеты кажутся верными, а в проводимых нами экспериментах.
Когда многие из нас в детстве сталкиваются с идеей о том, что протоны, нейтроны и электроны составляют окружающий нас мир, очень мало говорится, как именно человечество узнало о материи, силах и вообще обо всем. Протон в миллион миллионов раз меньше песчинки, и далеко не очевидно, как можно работать с чем-то столь малым. Это и есть искусство экспериментальной физики: следовать за нашим любопытством, от зародыша идеи до реального физического оборудования и накопления новых знаний. Тем вечером в астролагере понимание того, что физика нравится мне больше, когда я имею дело с ней лично, привело меня к идее стать физиком-экспериментатором.
В то время как физики-теоретики могут наслаждаться математическими возможностями, эксперименты подводят нас к пугающей границе уязвимости – реальному миру. Вот в чем разница между теорией и экспериментом: идеи физика-теоретика должны учитывать результаты экспериментов, а у физика-экспериментатора – более тонкая работа. Экспериментатор не просто проверяет идеи физиков-теоретиков – он задает собственные вопросы, а также проектирует и создает оборудование, с помощью которого можно на них ответить.
Экспериментатор должен понимать теорию и уметь ее использовать, но он не должен ею ограничиваться. Он должен оставаться открытым для поиска чего-то неожиданного и неизвестного, а также понимать многое другое: от электроники до химии, от сварки до обращения с жидким азотом. Затем он должен объединить эти знания, чтобы манипулировать материей, которую нельзя увидеть. Правда в том, что эксперименты – сложный процесс, с фальстартами и неудачами. Они требуют любопытства и характера. Тем не менее на протяжении всей истории у многих хватало страсти и настойчивости ими заниматься.
За последнее столетие ученые, проводя эксперименты с элементарными частицами, прошли путь от домашних установок, управляемых одним человеком, до самых больших машин на Земле. Эпоха «Большой науки», начавшаяся в 1950-х годах, теперь переросла в проведение экспериментов, в которых участвуют более ста стран и десятки тысяч ученых. Мы строим подземные коллайдеры, состоящие из многокилометрового высокоточного электромагнитного оборудования, в рамках проектов, длящихся более 25 лет и стоящих миллиарды долларов. Мы достигли точки, когда успех науки не зависит только от одной страны.
Наша повседневная жизнь претерпела столь же сильные изменения. В 1900 году в большинстве домов до электричества оставалось 20 лет, лошади были основным видом транспорта, а средняя продолжительность жизни в Великобритании или Соединенных Штатах составляла менее 50 лет. Сегодня мы живем дольше – отчасти потому, что, заболев, можем обратиться в больницу, где есть МРТ, компьютерная томография и ПЭТ-сканеры, помогающие диагностировать болезни, а также целый ряд вакцин, лекарств и высокотехнологичных устройств для нашего лечения. У нас есть компьютеры, Всемирная паутина и смартфоны, которые нас соединяют и создают совершенно новые отрасли и способы работы. Даже окружающие нас товары разрабатываются, дополняются и улучшаются с использованием новых технологий – от шин для наших автомобилей до драгоценных камней в украшениях.