Живи долго! (страница 12)

Страница 12

Синдром Вернера – редкое генетическое заболевание, характеризующееся мутацией фермента репарации ДНК, что приводит к преждевременному старению. Когда сенесцентные клетки подвергались воздействию кверцетина, который может попасть в кровь при употреблении продуктов, богатых кверцетином[544], казалось, что они не уничтожаются, а реабилитируются[545]. Словно процесс старения был обращен вспять, как бы пробуждая к жизни мертвецов. А как насчет сенесцентных клеток, которые не мутировали? Там тоже был обнаружен «омолаживающий эффект». В журнале Experimental Gerontology исследователи из Греции заявили, что испытали кверцетин на добровольцах, и сообщили о «положительных результатах в отношении эластичности, увлажненности и глубины морщин»[546]. Однако их данные, похоже, не были опубликованы, что вызывает сомнения в правдивости заявлений.

Физетин

Ободренные полученными данными, подтверждающими сенолитическое действие коктейля из кверцетина, исследователи приступили к изучению других флавоноидов[547] и обнаружили такой, который оказался почти в 2 раза мощнее кверцетина: физетин[548]. Он способен увеличить продолжительность жизни дрожжей на 55 %, а плодовых мушек – на 23 %. Физетин также увеличил продолжительность жизни мышей, даже если они стали получать препарат в более позднем возрасте[549].Средняя и максимальная продолжительность жизни мышей, начавших принимать физетин в возрасте, соответствующем 75 годам у человека, увеличилась примерно на 75 %. Маркеры клеточного старения и SASP были значительно снижены во всех проанализированных тканях, и это сопровождалось уменьшением возрастной патологии[550]. В отдельном исследовании было обнаружено, что физетин также может повышать долговременную память у мышей[551]. А что же мы?

Как и кверцетин, физетин в клинических исследованиях показал противовоспалительное действие[552], но как насчет сенолитического эффекта? Когда жировая ткань человека, удаленная в ходе обычной операции, подвергалась воздействию физетина, действительно, наблюдалось снижение уровня маркеров старения и SASP. Учитывая, что физетин естественным образом присутствует в рационе, не имеет побочных эффектов и уже продается без рецепта в виде БАД, ученые немедленно приступили к проверке антивозрастного потенциала физетина[553]. В настоящее время в работе находится более десятка исследований, в которых физетин противостоит целому ряду возрастных заболеваний, включая остеоартрит, остеопороз, болезни почек, снижение когнитивных способностей и даже осложнения COVID-19[554]. Тот факт, что к натуральному продукту проявляется столь большой клинический интерес – в отсутствие финансовых стимулов, которые традиционно определяют большую часть биомедицинских исследований, – говорит о его перспективности.

Ягодные сокровища

Хотя впервые физетин был выделен из кустарника, называемого скумпией (или венецианским сумахом), выше всего его концентрация в клубнике – это на сегодня самый богатый из известных пищевых источников физетина[555]. Возможно, это объясняет, почему именно клубника, а не черника (несмотря на высокое содержание в ней антиоксидантов) смогла более эффективно спасти крыс, подвергшихся радиационному облучению[556]. В видео see.nf/fisetin я привожу все основные исследования клубники. Вкратце: рандомизированные контролируемые исследования показывают, что клубника может улучшать когнитивные способности[557], снижать уровень холестерина, воспаления[558], излечивать остеоартрит[559], а также увеличивать количество полезных микроорганизмов в кишечнике, включая Christensenellaceae[560] – недавно открытое[561] семейство бактерий, связанных с долголетием (эту связь обнаружили во время исследований долгожителей – столетних и старше)[562]. В видеоролике я также объясняю, почему не рекомендуется принимать добавки с физетином.

Перец пиппали

Третье природное сенолитическое соединение – пиперлонгумин[563], который в концентрированном виде содержится в специи, продающейся в индийских продуктовых магазинах под названием пиппали (Piper longum, известной также как пибо в Китае и длинный перец в Европе)[564]. О том, что это за специя и что она может делать, я подробно рассказываю в see.nf/pippali. Я в него верю, поэтому добавил в свой ежедневный набор специй наряду с амлой (см. с. 557), черным кумином (см. с. 28) и куркумой (см. с. 113). Обратите внимание, что пиппали не рекомендуется использовать во время беременности и кормления грудью[565].

Пища для размышлений

Клеточное старение считается одним из основополагающих признаков старости[566]. Воспалительный SASP, выделяемый стареющими клетками, признается главной движущей силой деградации тканей и развития заболеваний[567]. Чтобы избежать старения клеток, мы можем защитить ДНК от повреждения, следуя рекомендациям, приведенным в главе «Окисление», а для очистки таких клеток и их SASP включить в рацион продукты, в которых содержатся природные сенолитические соединения: кверцетин, физетин и пиперлонгумин. Хотя пока неясно, можно ли достичь достаточного уровня сенолиза, употребляя продукты, богатые этими соединениями, такие продукты сами по себе полезны для здоровья.

Чтобы замедлить старение, ежедневно употребляйте:

• продукты, напитки и приправы, богатые кверцетином, такие как лук, яблоки, капуста, чай, каперсы без соли;

• свежую, замороженную или сублимированную клубнику;

• приправу к блюдам с пиппали (длинным перцем).

Эпигенетика

До недавнего времени считалось, что процесс старения – это неумолимое снижение функций организма, характеризующееся накоплением молекулярных повреждений ключевых клеточных компонентов, в частности ДНК[568]. Различные узлы автомобиля со временем выходят из строя, то же происходит и с органами нашего тела. Опровергая это предположение, назовем такие формы жизни, которые, казалось бы, не поддаются старению, находясь в состоянии некоего анабиоза: финиковые косточки, найденные при археологических раскопках, прорастающие через тысячи лет, растения[569], возрождающиеся из плодов, закопанных арктическими белками 30 тысяч лет назад, споры[570] и бактерии, найденные в янтаре и сохранившие жизнеспособность через десятки миллионов лет, а в кристаллах соли – через сотни миллионов лет. Однако не нужно искать экзотические примеры, чтобы продемонстрировать отсутствие связи биологического старения с хронологическим («календарным») старением. Случаи, когда часы старения не только останавливаются, но и активно обращаются вспять и даже обнуляются, мы можем наблюдать каждый день[571].

Великая перезагрузка

Задумайтесь. Девочка рождается с генетически заложенным количеством яйцеклеток. Могут пройти десятилетия, прежде чем одна из этих яйцеклеток будет оплодотворена. Эта яйцеклетка может пролежать в яичниках 20, 30, 40 лет – и все это время она будет стареть, как и все остальные клетки ее организма. Допустим, ее хозяйка забеременеет в 30 лет. После оплодотворения, если яйцеклетка каким-то образом не отмотает свои часы старения до нуля, из этой тридцатилетней яйцеклетки может родиться еще одна девочка с яичниками, которым на тот момент 30 лет и 9 месяцев. К тому времени, когда она родит ребенка спустя десятилетия, возраст яйцеклеток будет превышать 50 лет, и они будут продолжать стареть и накапливать молекулярные повреждения с каждым последующим поколением. Поэтому все проявления старения в яйцеклетках обязательно должны быть стерты[572]. В противном случае возраст яйцеклеток в яичниках женщин исчислялся бы миллионами лет!

В 1996 году мы узнали, что яйцеклетки – не единственные клетки, способные полностью изменить процесс старения. В тот год родилась овца по имени Долли. Ядро неоплодотворенной яйцеклетки было удалено, а на его место вставлено ядро клетки вымени. («Долли получена из клетки молочной железы, – невозмутимо заявил один из ключевых исследователей, объясняя, почему ее так назвали, – и мы не могли придумать более впечатляющей пары молочных желез, чем у Долли Партон[573]»)[574]. Затем после небольшого удара током, клетка начала делиться (сперматозоиды не потребовались), и на свет появилась Долли – первое животное, клонированное из взрослой клетки. (Ранее из клетки головастика была клонирована лягушка, за что исследователь был удостоен Нобелевской премии, но Долли стала первым животным, клонированным из взрослой клетки[575].)

Мир был поражен тем, что удалось создать генетически идентичную копию животного. После Долли были созданы тысячи клонов мышей, коз, свиней, крыс, коров, лошадей, хорьков, волков, оленей, буйволов, верблюдов и собак. Мимо кошек тоже не прошли, первая из них предсказуемо получила имя Copycat[576]. Однако значимость этого не ограничивается воспроизведением особо продуктивных сельскохозяйственных животных. Оказалось, что в одной зрелой специализированной клетке, взятой из вымени овцы, был спрятан полный генетический план всего животного, которое мы узнали под именем Долли[577]. Более того, возраст клетки был отмотан назад до нуля.

Ходят разговоры, что Долли была поражена неким синдромом преждевременного старения. Ведь овцы живут до 12 лет, а клетка вымени была взята у шестилетнего донора[578], и Долли умерла в 6 лет, что позволяет предположить, что часы старения просто тикали без перезапуска. Но Долли умерла от вирусного заболевания, а не от старости[579], и последующие опыты показывают, что клоны могут иметь нормальную продолжительность жизни[580]. Более того, мышей последовательно реклонировали, то есть создавали клоны из клонов и далее из последующих клонов в двадцати пяти поколениях – и у всех них была нормальная продолжительность жизни[581]. Таким образом, взрослые клетки можно не только вернуть в эмбриональное состояние, но и эффективно омолодить, стерев все следы старения[582].

Добро пожаловать в эпигенетику.

[544] Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets. 2016;20(6):689–703. https://pubmed.ncbi.nlm.nih.gov/26667209/
[545] Geng L, Liu Z, Zhang W, et al. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell. 2019;10(6):417–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538594/
[546] Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45(10):763–71. https://pubmed.ncbi.nlm.nih.gov/20619334/
[547] Zhu Y, Doornebal EJ, Pirtskhalava T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL–XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391241/
[548] Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel). 2020;12(8):2134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619/
[549] Li W, Qin L, Feng R, et al. Emerging senolytic agents derived from natural products. Mech Ageing Dev. 2019;181:1–6. https://pubmed.ncbi.nlm.nih.gov/31077707/
[550] Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/
[551] Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. PNAS. 2006;103(44):16568–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637622/
[552] Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025–31. https://pubmed.ncbi.nlm.nih.gov/29541713/
[553] Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/
[554] U.S. National Library of Medicine. Search results for fisetin. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=. Accessed May 29, 2021.; https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=
[555] Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. https://pubmed.ncbi.nlm.nih.gov/31750288/
[556] Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036(1–2):122–9. https://pubmed.ncbi.nlm.nih.gov/15725409/
[557] Miller MG, Thangthaeng N, Rutledge GA, Scott TM, Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr. Published online January 20, 2021:1–11.; https://pubmed.ncbi.nlm.nih.gov/33468271/
[558] Gao Q, Qin LQ, Arafa A, Eshak ES, Dong JY. Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2020;124(3):241–6. https://pubmed.ncbi.nlm.nih.gov/32238201/
[559] Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/
[560] Ezzat-Zadeh Z, Henning SM, Yang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res. 2021;85:60–70. https://pubmed.ncbi.nlm.nih.gov/33450667/
[561] Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol. 2012;62(1):144–9. https://pubmed.ncbi.nlm.nih.gov/21357455/
[562] Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819567/
[563] Wang Y, Chang J, Liu X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191878/
[564] Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol. 2020;247:112255. https://pubmed.ncbi.nlm.nih.gov/31568819/
[565] Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper Longum Linn. fruit. J Acupunct Meridian Stud. 2011;4(2):134–40. https://pubmed.ncbi.nlm.nih.gov/21704957/
[566] López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/
[567] van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
[568] López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
[569] Sallon S, Solowey E, Cohen Y, et al. Germination, genetics, and growth of an ancient date seed. Science. 2008;320(5882):1464. https://pubmed.ncbi.nlm.nih.gov/18556553/
[570] Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci U S A. 2012;109(10):4008–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309767/
[571] Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
[572] Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
[573] Американская кантри-певица и киноактриса. – Примеч. ред.
[574] BBC News. 1997: Dolly the sheep is cloned. On this day: 1950–2005. BBC. http://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm. Published February 22, 2005. Accessed May 26, 2021.; https://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm
[575] Gurdon JB. The cloning of a frog. Development. 2013;140(12):2446–8. https://pubmed.ncbi.nlm.nih.gov/23715536/
[576] Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/
[577] López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
[578] Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/
[579] Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
[580] Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/
[581] Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/
[582] López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/