Песнь клетки. Медицинские исследования и новый человек (страница 6)
На протяжении XVIII и XIX веков врачи и ученые настойчиво искали системные причины человеческих болезней. Но самыми успешными результатами их трудов оказались лишь несколько несущественных дополнений к прежним объяснениям, основанным на макроскопической анатомии: любая болезнь представляет собой нарушение функции конкретного органа. Печень. Желудок. Селезенка. Был ли какой-то более глубокий организационный принцип, связывающий эти органы с непонятными и таинственными нарушениями их функции? Стоило ли вообще рассуждать о патологии человека в систематическом плане? Возможно, ответ нельзя было найти в анатомии видимых структур, а только на микроскопическом уровне. На самом деле в XVIII веке химики уже начали понимать, что свойства вещества (взрывоопасность водорода и текучесть воды) являются эмерджентными свойствами невидимых частиц, молекул, а также составляющих их атомов. Могла ли биология оказаться устроенной схожим образом?
Рудольфу Вирхову едва исполнилось восемнадцать, когда он поступил в медицинский Институт Фридриха Вильгельма в Берлине9. Институт был создан с целью обучения военных медиков для прусской армии, и там царила соответствующая военная этика: предполагалось, что студенты в дневное время должны проводить по шестьдесят часов в неделю на занятиях, а материал запоминать по ночам. (В военной медицинской школе Pepiniere старшие военные врачи часто проводили неожиданные проверки посещаемости10. Если выяснялось, что кого-то из учащихся нет на занятиях, наказывали весь класс.) “Так происходит каждый день без остановки с шести утра до одиннадцати вечера, кроме воскресенья, – мрачно писал Вирхов отцу, – <… > и к вечеру устаешь так, что уже мечтаешь о жесткой постели, с которой, проспав почти в летаргическом сне, встаешь утром почти таким же усталым, как накануне”11. Учащимся выдавали дневную порцию мяса, картошки и водянистого супа, а жили они в маленьких изолированных комнатках. В камерах.
Вирхов зазубривал материал. Анатомию преподавали вполне разумно: макроскопическая карта тела слегка уточнилась со времен Везалия усилиями многих поколений вивисекторов в результате тысяч вскрытий. Но в патологической анатомии и физиологии того времени не было основополагающей логики. Почему органы работают, что они делают и почему теряют свою функцию – на этот счет существовали лишь спекулятивные рассуждения, натянутые, как по военному приказу, от гипотезы до факта. Патологоанатомы уже давно разделились на разные школы мысли в отношении происхождения болезней. Сторонники гипотезы миазмов полагали, что болезни возникают от загрязненных испарений, последователи галенизма верили, что болезнь – это патологическое нарушение равновесия между четырьмя жидкими и полужидкими средами тела, называемыми “туморами”, а сторонники “психиатрической теории” доказывали, что болезнь – это проявление расстройства разума. К тому времени, когда Вирхов занялся медициной, большинство из этих теорий находились в плачевном состоянии или уже умерли.
В 1843 году Вирхов получил медицинскую степень и начал работать в берлинском госпитале Шарите, где сотрудничал с Робертом Фрорипом – патологоанатомом, микроскопистом и куратором коллекции патологических образцов госпиталя. Освободившись от интеллектуального рабства предыдущего института, Вирхов принялся искать систематический путь к пониманию человеческой физиологии и патологии. Он погрузился в изучение истории патологической анатомии. “Существует острая и всепоглощающая необходимость понять [микроскопическую патологию] 12”, – писал он. Однако эта дисциплина, по его ощущениям, “свернула куда-то не туда”. Возможно, микроскописты были правы и систематический ответ нельзя было найти в видимом мире. Что, если сердечная недостаточность или цирроз печени являются лишь эпифеноменами – эмерджентными проявлениями более глубокой дисфункции, невидимой невооруженным глазом?
Анализируя прошлое, Вирхов осознал, что ученые раньше уже рассматривали этот невидимый мир. В конце XVII столетия исследователи обнаружили, что ткани животных и растений построены из единообразных живых структур, названных клетками. Могут ли эти самые клетки находиться в центре физиологии и патологии? Если это так, откуда они берутся и что делают?
“Истинное знание заключается в осознании незнания”, – написал он в письме отцу в 1830-е годы, еще в бытность студентом медицинского факультета. “Как сильно и болезненно я ощущаю пробелы в моих знаниях. Именно по этой причине я не остановился пока ни на одном направлении науки… Для меня еще много неопределенного и нерешенного”. Но в медицине Вирхов нашел опору, и боль в его душе как будто утихла. “Я сам себе руководитель”, – писал он с вновь обретенной уверенностью в 1847 году13. Если клеточной патологии не существовало, он должен был создать это направление с нуля. Возмужав как врач и обретя знания по истории медицины, он мог наконец остановиться и начать заполнять пробелы.
Видимая клетка. “Вымышленные истории о маленьких животных”
Уоллес СтивенсВ сумме частей есть только части.
Мир нужно измерять глазом.
“Мир нужно измерять глазом”.
Современная генетика родилась из сельскохозяйственной практики: моравский монах Грегор Мендель обнаружил гены, занимаясь перекрестным опылением растений гороха с помощью кисточки в монастырском саду в городе Брно1. Русский генетик Николай Вавилов вдохновлялся селекцией зерновых культур2. И даже английский натуралист Чарльз Дарвин обратил внимание на невероятные изменения форм животных в результате работы селекционеров3. Развитию клеточной биологии тоже способствовала простая практическая технология. Интеллектуальная наука родилась из примитивного ремесла.
В случае клеточной биологии это было просто искусство наблюдения: ученые измеряли, наблюдали и анализировали мир глазом. В начале XVII века голландские мастера по изготовлению очков отец и сын Ганс и Захарий Янсен поместили два увеличительных стекла в верхнюю и нижнюю часть полой трубки и обнаружили, что могут видеть мир, невидимый невооруженным глазом4.[11] Такие микроскопы с двумя линзами стали называть “сложными”, а микроскопы с единственной линзой – “простыми”, но появление обоих типов микроскопов стало возможным благодаря древнейшему опыту стеклодувного ремесла, развивавшегося со времен арабского и греческого мира до эпохи итальянских и голландских стеклодувов. Во II веке до нашей эры Аристофан описывал “горящие шары”: стеклянные сферы для фокусировки и направления луча света, которые продавали на рынках в качестве безделушек. Если внимательно посмотреть через “горящий шар”, в нем можно увидеть увеличение миниатюрной вселенной. Увеличьте его до линзы размером с глаз, и получится первый прототип монокля – вероятно, этот фокус в XII веке изобрел итальянский оптик Амати. Приделайте ручку – и получите увеличительное стекло.
Главное достижение Янсенов заключалось в том, что они соединили мастерство стеклодувов с инженерным решением, позволявшим двигать стекла на неподвижной подставке. Установив один или два куска идеально прозрачного стекла в форме линзы на металлической пластинке или трубке с помощью винтов и зажимов, позволяющих передвигать стекла, исследователи нашли путь в невидимый миниатюрный мир – в неизвестную ранее огромную вселенную, противоположную макроскопическому космосу, видимому с помощью телескопа.
Один нелюдимый голландский торговец самостоятельно научился разглядывать этот невидимый мир. В 1670-е годы торговцу тканями из Делфта Антони ван Левенгуку понадобился инструмент для изучения качества и целостности нитей. В XVII веке Голландия была активным центром торговли тканями5: шелк, бархат, шерсть, лен и хлопок прибывали крупными рулонами и свертками из портов и колоний, а из Голландии расходились по всей континентальной Европе. Опираясь на работу Янсенов, Левенгук сконструировал простой микроскоп с единственной линзой, укрепленной на толстой латунной пластинке, и с тоненькой платформой для размещения образца. Поначалу он использовал инструмент, чтобы оценивать качество тканей. Но вскоре интерес к возможностям созданного им же инструмента полностью его захватил: он стал направлять линзы на любые предметы, которые попадались ему под руку.
Двадцать шестого мая 1675 года Делфт накрыла сильнейшая буря. Левенгук, которому в то время было сорок два года, набрал воды, протекавшей через крышу дома, оставил ее постоять сутки, а потом поместил каплю под стекло одного из микроскопов и поднес к свету6. И тут же пришел в безумный восторг. Насколько ему было известно, еще никто прежде не видел ничего подобного. В воде кишели десятки крохотных организмов – “анималькулей”, как он их назвал. Люди, смотревшие в телескопы, видели макроскопический мир – голубую Луну, газовую Венеру, кольца Сатурна, красноватый Марс. Но никто не рассказывал о чудесном живом космосе в капле дождевой воды. “Это было самое чудесное из всех чудес, которые я обнаружил в природе, – писал он в 1676 году[12]. – Никогда мои глаза не испытывали большего удовольствия, чем при виде этого спектакля тысяч живых существ в капле воды”7.
(а) Схема одного из первых микроскопов Левенгука: 1) предметная игла, 2) основной винт, з) линза, 4) рукоятка для фокусировки.
(б) Один из микроскопов Левенгука, установленный на латунной пластине.
Левенгук хотел увидеть больше, найти более точные инструменты для наблюдения за этой завораживающей новой вселенной живых существ. Он заказал шарики разных размеров из венецианского стекла самого высокого качества и принялся тщательно шлифовать и полировать их, придавая им идеальную двояковыпуклую форму. (Как мы теперь знаем, некоторые линзы он изготавливал, растягивая стеклянную палочку над открытым огнем до состояния тонкой нити и отламывая кончик, в результате чего на конце возникал “пузырек”, превращавшийся в глобулу в форме линзы.) Он устанавливал эти линзы на тонких металлических пластинках из латуни, серебра или золота, снабженных сложной системой миниатюрных зажимов и винтов, позволявших двигать элементы инструмента вверх и вниз и добиваться идеальной фокусировки. Он изготовил около пяти сотен таких микроскопов, и каждый из них – чудо тончайшего ремесла.
А были ли подобные существа в другой воде? Левенгук упросил человека, ездившего к морю, привезти ему океанской воды “в чистой стеклянной бутыли”. И вновь обнаружил плавающих в воде крохотных одноклеточных существ “с телами мышиного цвета и более светлым овальным окончанием”8. Наконец в 1676 году он записал свои наблюдения и отослал записи в самое именитое научное общество своей эпохи.
“В 1675 году – писал он в письме Лондонскому королевскому обществу, – я обнаружил живых существ в дождевой воде, которая простояла несколько дней в новом глиняном горшке… Когда эти анималькули, или живые атомы, двигались, они выставляли вперед два усика и беспрерывно себя подталкивали… Остальное тело было округлым, слегка заостренным к концу, где у них был хвост, примерно в четыре раза длиннее тела”9.
Когда я закончил писать этот параграф, мною овладело такое же непреодолимое желание – я тоже захотел посмотреть на это. Находясь в состоянии полной неопределенности посреди пандемии, я решил соорудить собственный микроскоп – или хотя бы наиболее близкий аналог. Я заказал металлическую пластинку и поворачивающийся зажим, просверлил дырку и установил пластинку с самой лучшей тонкой линзой, которую смог купить. Это напоминало современный микроскоп не больше, чем телега с волами напоминает космический корабль. Я выбросил не один десяток прототипов, прежде чем получил один рабочий. Однажды в солнечный день я поместил капельку дождевой воды из лужи на предметную иглу и вынес инструмент на свет.