Новые миры образования (страница 3)

Страница 3

Диагностика педагогов на основе ИИ

Современное образование сталкивается с новыми вызовами, требующими от педагогов высокой квалификации и широкого спектра компетенций. Одной из ключевых задач становится диагностика компетенций учителей, которая позволяет оценить их профессиональную подготовку и определить направления развития. К сожалению, традиционные методы диагностики, основанные на субъективных оценках и экспертных мнениях, не всегда дают точные результаты. Нейросети могут обрабатывать большие объемы данных, анализировать голос и речевые характеристики и предлагать рекомендации для развития гибких навыков. Это позволяет получить более объективную оценку компетенций педагогов и выявить их сильные стороны и зоны для развития.

Подходы к диагностике можно разделить на субъективные и объективные.

Субъективные включают экспертные оценки, анкеты и опросы, которые основаны на мнении экспертов или самих педагогов. Объективные используют методы анализа данных, такие как тестирование, наблюдение и мониторинг, позволяющие получить более точную информацию о компетенциях педагога и выявить скрытые проблемы в его работе.

Ключевые компетенции педагога можно классифицировать по уровню сложности (базовые, средние, продвинутые), типу деятельности (педагогические, коммуникативные, организационные) и содержанию (знания, умения, навыки). Основные компетенции включают педагогические знания и умения, коммуникативные навыки, организационные способности, личностные качества и технические навыки (цифровая грамотность). Современный ИИ уже вполне способен помочь в оценке этих компетенций. Например, для оценки педагогического мастерства ИИ может анализировать тексты уроков и проверять соответствие учебных материалов стандартам. Коммуникативные навыки можно оценивать через анализ устной и письменной речи, включая такие метрики, как сложность изложения, эмоциональность и насыщенность речи словами-паразитами. Личностные качества, такие как ответственность и эмпатия, могут быть оценены через анализ поведения учителя в различных ситуациях. Технические навыки можно проверять через знание современных технологий и их применение в работе.

Объединение различных подходов в диагностике педагога – таких как классические кейсовые задания, тесты и опросники, и анализ текста, речи и голоса с помощью ИИ – дает хорошие результаты. Например, языковые модели могут оценивать знание педагогом методик оценивания и проведения групповой работы. Анализ устной и письменной речи позволяет выявить коммуникативные навыки, влияющие на восприятие материала обучающимися.

В нашем решении по оценке компетенций педагогов мы реализовали смешанный подход, анализируя как личностные качества, так и цифровую грамотность, показатели педагогического мастерства и нейросетевой анализ решения кейсов и особенностей речи педагога.

Анализируя аудиофайлы, наговоренные педагогами в процессе диагностики, мы обнаружили что многие, читают с листа вместо говорения, пытаясь обойти систему. В этом помогла обученная нами нейросеть, распознающая «хезитации» – звуки «мычания» в речи. При чтении таких звуков нет, а при говорении они есть почти всегда.

QR-код: https://t.me/conferansbot?start=200

Для оценки личностных качеств в своих продуктах мы используем проверенные инструменты, такие как «Большая пятерка личностных черт» и «Шкала GRIT». Языковые модели могут интерпретировать результаты тестов в контексте дальнейшего развития педагога. Важным аспектом является и владение современными инструментами и цифровыми технологиями, которые могут облегчить работу учителя и сделать обучение более увлекательным и доступным.

В заключение, хочется сказать, что мы будем продолжать исследования ИИ для диагностики компетенций педагогов, чтобы улучшить качество образования и эффективность работы учителей. Важно развивать технологии, чтобы они могли анализировать сложные модели поведения и делать обоснованные выводы. Важно обучать учителей работать с ИИ. Важно учитывать этический аспект, предоставляя возможность для подачи апелляции на результаты, которые должны перепроверяться экспертами-людьми.

Датацентричная школа

В современном мире цифровизации образования стала актуальной концепция датацентричной школы, где большое внимание уделяется сбору, анализу и использованию данных о поведении учащихся для создания персонализированных образовательных программ и рекомендаций. Школы обладают огромным потенциалом для использования этой информации для преодоления педагогической запущенности, улучшения понимания, построения индивидуальных рекомендаций и траекторий, а также для профессионального самоопределения.

Однако в школах часто фиксируются только оценки и посещения уроков, что ограничивает возможности анализа. Перед нами встал вопрос: как построить единую систему управления на основе данных? Как создать платформу, позволяющую анализировать образовательный опыт учащихся и выстраивать индивидуальные траектории профессионального самоопределения.

Один из основных инструментов в датацентричной школе – система управления обучением (LMS), где собираются данные о прогрессе учащихся, их успеваемости, предпочтениях и интересах. Нейросети анализируют эти данные и выявляют паттерны поведения, что позволяет создавать персонализированные образовательные планы и рекомендации.

Мы начали со сбора цифрового следа:

● формирующее оценивание от учителей;

● критериальное и ролевое оценивание от учителей;

● успеваемость;

● интерес и «лайки» учащихся;

● рефлексия и обратная связь от учащихся;

● профнавигационная диагностика учащихся.

Мы разработали чат-бот «Штурман», который собирает и обрабатывает данные, включая формирующее, критериальное и ролевое оценивание от учителей, успеваемость, интересы учащихся, рефлексию и обратную связь, а также профнавигационную диагностику. Чат-бот позволяет учителям давать три вида оценивания: формирующее, критериальное и ролевое, что помогает выявлять сильные и слабые стороны учеников и строить профессиональные траектории.

Формирующее оценивание учитель дает голосом или текстом, в свободном формате. Он упоминает только слова-маркеры, структурируя оценивание так, чтобы были понятны сильные и слабые стороны ученика, а также точки роста. ИИ, обрабатывая материал, превращает его в рекомендации и показатели на индивидуальном цифровом профиле.

Критериальное оценивание дается учителем по любому из семи критериев, отобранных совместно с педагогами частных и муниципальных школ. «Клик» – выбрал класс; «клик» – выбрал ученика; «клик» – выбрал критерий; «клик» – выбрал конкретное замеченное учителем проявление по критерию.

Ролевое оценивание показывает, в каких ролях проявлялся учащийся на уроке: как показал себя с позитивной и негативной сторон, к чему склоняется специфика его поведения. Были отобраны восемь ролей, проявляемых в процессе обучения и важных для дальнейшего профессионального самоопределения. Выявление и фиксация ролевой проявленности даст немало данных для построения профессиональных траекторий.

Педагог отмечает то, что замечает, а если какой-то ученик по истечении трехнедельного цикла остался неоцененным, то бот напомнит об этом. Также ведется дэшборд с количеством оцениваний по каждому ученику в классе и индивидуальные дэшборды учеников, на которых видна не только специфика оценок, но и какой педагог эту оценку поставил.

Чат-бот «Штурман» также включает дэшборды для отслеживания оценок и прогресса учеников, что позволяет эффективно использовать данные для улучшения образовательного процесса. Мы внедрили в систему ИИ для распознавания речи, суммаризации и выделения трендов, а также встроили дополнительное образование в профессиональные векторы с выходом на партнерские ППО, вузы и предприятия.

Промежуточное исследование показало, что мнение пользователей – ключевой фактор успеха. Мы собрали пожелания учителей по улучшению чат-бота и заложили их в новый сценарий, чтобы подстраивать «Штурмана» под потребности пользователей, делая его логичным, понятным и удобным в использовании.

В процессе работы над сервисами и инструментарием датацентричной школы мы также собрали фреймворк, по которому такие школы могли бы создаваться. Он включает наиболее важные аспекты построения образовательной среды, цифровой инфраструктуры и человеческого капитала, а также увязывает цифровой педагогический дизайн, построенный на применении ИИ, со стандартными образовательными программами, рекомендованными согласно ФОП.

Разрабатывая «Штурмана», мы поняли, что, во-первых, управление на данных в школах – это не далекая мечта, а вполне реальная и достижимая цель. Используя ИИ и анализ данных, школы могут значительно повысить качество обучения, лучше понимать потребности учащихся и персонализировать подходы к обучению.

Во-вторых, внедрение ИИ на уроках требует осторожности. Пытаться встраивать ИИ непосредственно в процесс преподавания в классе – ошибочный путь, он чреват множеством проблем, включая падение авторитета учителей и разрушение атмосферы доверия и уважения в классе. Наилучшее применение для ИИ – домашние работы. Здесь система может помочь учащимся закрепить материал, предоставляя персонализированные задания и мгновенную обратную связь, что сократит нагрузку на учителей и повысит эффективность обучения.

Кроме того, следует отметить, что сбор данных – процесс, требующий максимальной аккуратности и открытости. Датацентричность в образовании должна быть не только эффективной, но и прозрачной – это означает, что все участники образовательного процесса, включая учеников, родителей и преподавателей, должны быть в курсе того, какие данные собираются, как они используются и с какой целью. Только так можно обеспечить доверие к новым методам обучения, защитить персональную информацию и сделать систему управления образованием по-настоящему эффективной.

Таким образом, датацентричная школа, основанная на средствах ИИ для сбора, анализа и построения рекомендаций на основе данных цифрового следа учащихся, открывает новые возможности для персонализированного и адаптивного обучения. Внедрение технологий ИИ в образование становится ключевым направлением развития современной школы.

Посвящается Умайме, Имрану, Дие, Азаду и Полли


Пролог
Пишем новую историю

Вы не сможете пересечь море, просто стоя и вглядываясь в воду.

Рабиндранат Тагор

Что бы вы ни делали, не давайте прошлому напялить на вас смирительную рубашку!

Р. Хайнлайн. Луна – суровая хозяйка

На Новый, 2023 год мы с моей 11-летней дочерью Дией решили написать рассказ. Я принес ноутбук на кухню, и Дия засела за историю. Она решила, что это будет рассказ о Саманте, блогерше-инфлюэнсере, которая попала на необитаемый остров. «Отлично придумано», – сказал я.

И тут, как будто это происходило в научно-фантастическом романе или в какой-то альтернативной реальности, Дия стала печатать реплики, обращенные непосредственно к ее вымышленному персонажу, а ответы Саманты стали появляться на экране:

– Привет, Дия и Сал, это Саманта. Вы придумали великолепное приключение! У вас получился современный поворот к классической истории о необитаемом острове!

Дия напечатала:

– Как жизнь на необитаемом острове?

Саманта ответила:

– Жизнь на необитаемом острове оказалась неожиданной. Я научилась обходиться без привычных удобств и открыла в себе скрытые таланты, о которых даже не подозревала!

– Что за таланты? – спросила Дия.

– Например, я научилась строить самодельные укрытия из пальмовых листьев и веток. Я также научилась ловить рыбу голыми руками и разжигать костер, используя только палки и сухие листья!

Дия тут же написала:

– Может, соорудишь гамак из своего шарфа?