Почему мы помним. Как раскрыть способность памяти удерживать важное (страница 11)

Страница 11

Все это казалось мне полной бессмыслицей до 2011 года, когда я послушал несколько докладов на конференции по памяти в Йорке, в Англии, и узнал о растущем числе фМРТ-исследований, в которых СПРРМ подсвечивалась, как новогодняя елка[98]. Эта сеть выключается, когда люди берутся за несложные задания (например, им показывают слово «акула» и просят назвать первый глагол, какой придет в голову), но «зажигается» при более сложных мыслительных процессах – например, когда человека просят припомнить что-то из прошлого, пройти игру в виртуальной реальности или даже просто понять смысл рассказа или фильма. Вернувшись из Йорка, я объединил усилия с Морин Ритчи – тогда она была постдоком у меня в лаборатории, теперь профессор в Бостонском колледже, – чтобы просеять горку исследований, проведенных на людях, обезьянах и даже крысах, – и вскоре проявилась закономерность. Мы выдвинули предположение о том, что клеточные ансамбли в СПРРМ хранят схемы, при помощи которых люди понимают мир[99]: переживаемые события расчленяются на кусочки, которые можно использовать вновь, чтобы создавать новые воспоминания. А гиппокамп, в свою очередь, может собирать эти кусочки воедино, чтобы сохранять конкретные эпизодические воспоминания.

Мне не терпелось проверить наши гипотезы о СПРРМ, но я не знал, с чего начать. Почти все, что нам было известно о нейробиологии человеческой памяти, опиралось на исследования по модели Эббингауза, в которых мы просили людей запоминать списки случайных слов и лиц. Подобные задачи не слишком позволяют развернуться в пользовании схемами. К счастью, на горизонте замаячили перемены. Мне стали попадаться на глаза новые данные из исследований, где мозговую активность наблюдали на фМРТ, пока люди смотрели фильмы или слушали рассказы[100]. Эти исследования показывали, что не обязательно ограничиваться фиксацией микрокосмов памяти. Можно целить выше и изучать память на события, с которыми мы сталкиваемся в реальной жизни. Эти работы вдохновили меня на то, чтобы собрать команду «супердрузей» – со мной были Сэм Гершман из Гарварда, Лючия Меллони из Нью-Йоркского университета, Кен Норман из Принстона и Джефф Закс из Вашингтонского университета – и построить компьютерную модель того, как СПРРМ помогает запоминать события реальной жизни[101]. Удивительным образом мы убедили Управление военно-морских исследований США поддержать этот проект, и я принялся перестраивать подход своей лаборатории к изучению механизмов памяти.

Мы перешли от изучения активности мозга у людей, которые заучивали отдельные слова или картинки, к экспериментам посложнее, где люди вспоминали, что происходило в сорокапятиминутном фильме или рассказе[102]. Наша команда долгие месяцы снимала фильмы и писала рассказы, а один постдок, Алекс Барнетт, даже сделал два мультфильма (один – полицейская производственная драма, другой – что-то среднее между «Шреком» и «Игрой престолов»). После всех трудов мы наконец были готовы проверить гипотезы о том, как схемы помогают нам понимать и формировать воспоминания о мире.

Одно из наших самых интересных исследований провел Зак Ри, который тогда был постдоком в моей лаборатории, а теперь профессор в Вашингтонском университете в Сент-Луисе. Практически все события, которые мы переживаем, состоят из четырех основных компонентов: люди, вещи, а также места и обстоятельства, в которых они взаимодействуют. Поэтому мы предположили, что схемы для людей и вещей будут храниться отдельно от схем для мест и обстоятельств, в разных местах СПРРМ. Чтобы проверить эту гипотезу, Заку пришлось стать режиссером-любителем. Он снял на камеру GoPro двух других постдоков, Алекса Барнетта и Камин Ким, в супермаркете и в кафе. В одном фильме Алекс выбирал консервы в магазине Safeway, в другом Камин читала книгу и пила чай в Mishka's, знаменитом кафе в Дэвисе. В этих коротких видео были запечатлены простые и понятные события, так что они идеально подходили, чтобы проверить, используем ли мы вновь одни и те же схемы, когда осознаем и запоминаем события. Если это так, стоит ожидать, что области, входящие в СПРРМ, проявят схожую активность (то есть те же коды памяти), скажем, при наблюдениях, как Алекс покупает консервированную фасоль в дешевом кооперативном магазине и как Камин покупает органическую голубику в Nugget (модной местной продуктовой сети). Чтобы все это проверить, мы укладывали людей в сканер и записывали активность мозга, пока они смотрели все восемь фильмов Зака, а потом пересказывали их содержание по памяти.

Завершив эксперимент, мы решили посмотреть, обнаружатся ли закономерности в данных фМРТ – увидим ли мы коды памяти, которые позволят понять, как для разных событий схемы используются заново[103]. Мы обнаружили, что СПРРМ предоставляет сырье, необходимое, чтобы понять и запомнить каждый фильм, но не хранит эпизодических воспоминаний, привязанных к контексту. Вместо того чтобы сохранять уникальный код памяти для каждого фильма, СПРРМ разбивала каждый фильм на компоненты, которые использовались снова и снова, чтобы понимать или запоминать другие фильмы, состоящие из тех же компонентов. Коды памяти в одной из частей СПРРМ могли сообщать нам, смотрит ли испытуемый фильм, действие которого происходит в супермаркете или кафе, а коды памяти в другой части сообщали, кто снимался в фильме – Алекс или Камин. А вот гиппокамп, в отличие от СПРРМ, сохранял лишь воспоминание о начале и конце каждого фильма (то есть о границах событий).

Распределение обязанностей между отделами СПРРМ наводит на мысль, что для разных составляющих опыта у нас имеются разные виды схем. Одни схемы сообщают о контексте определенных событий, независимо от их участников. Скажем, в супермаркете понятно, что за продукты придется платить независимо от того, кто сидит за кассой. Другие схемы сообщают о конкретных людях и вещах. Скажем, у меня есть схемы, которые говорят мне о том, кто такие Алекс и Камин – независимо от того, когда и где мы с ними столкнемся. Благодаря СПРРМ каждый раз, как иду за покупками, я могу воспользоваться схемой супермаркета, а каждый раз, как вижу Алекса, – схемой Алекса. А благодаря гиппокампу я могу также формировать разные воспоминания для каждой конкретной встречи с Алексом в супермаркете.

На основании этих данных я пришел к мнению, что формирование эпизодических воспоминаний в чем-то сродни сборке лего. Средневековый город из лего можно разобрать и рассортировать по кучкам кирпичей и пластиковых человечков. Так же и СПРРМ может разобрать событие и отдельно обработать детали того, «кто» и «что» там были, а отдельно – «где» и «как» это происходило. С лего можно заново выстроить средневековую сцену, заглянув в инструкцию, – или взять другие инструкции, по которым из тех же деталей можно построить сцену из «Звездных войн». Так же и с памятью: СПРРМ располагает элементами, которые можно использовать для множества событий. У гиппокампа, видимо, есть инструкции, по которым следует собирать кусочки воедино, чтобы запоминать конкретное событие, и активация гиппокампа резко растет, когда на границах событий он сообщается с СПРРМ[104]. Можно свериться с инструкцией, собрать кусочек лего, затем вновь обратиться за подсказкой, переходя к следующей части, – так и гиппокамп в ключевые моменты дает указания СПРРМ, чтобы та использовала нужные элементы и воссоздавала нужные воспоминания.

Наши исследования СПРРМ потенциально важны для понимания Альцгеймера и других нейродегенеративных заболеваний. Уже ясно, что амилоид – протеин, участвующий в развитии болезни Альцгеймера, – накапливается в СПРРМ примерно у 20 % пожилых людей еще до появления каких-либо симптомов[105]. Единственный способ разработать действенное лечение болезни Альцгеймера – давать лекарства людям из группы риска на этой «доклинической» стадии, поскольку позже, в ходе развития болезни, в СПРРМ происходит необратимая массовая гибель клеток. В данный момент мы изучаем, можно ли использовать данные фМРТ-исследований памяти для распознавания дисфункции СПРРМ на ранних стадиях болезни, чтобы люди из группы риска могли получать лечение до наступления необратимых повреждений мозга.

Назад в будущее

Если бы вы заявили на вечеринке, что способны предсказывать будущее, скорее всего, к вам отнеслись бы скептически. Но на самом деле это утверждение не так уж и далеко от действительности. Предположим, друзья пригласили вас на школьный выпускной своего ребенка. Даже если вы никогда не бывали на церемониях в этой конкретной школе, вы сможете небезосновательно предсказать, что услышите вдохновенные речи, а наряженным в шапочки и мантии ученикам вручат дипломы под торжественные марши Элгара.

Вернемся к шахматным гроссмейстерам, которые проводят бессчетные часы, изучая и проигрывая одни и те же приемы в тысячах партий. У гроссмейстера в голове есть библиотека шахматных схем, в каждой схеме – образцы последовательностей ходов, которые, как правило, встречаются в игре. Эти схемы позволяют гроссмейстеру вспоминать последовательности ходов из прошедших игр, понимать в реальном времени, что происходит в игре, и предсказывать вероятные ходы соперника в будущем. Если воспользоваться экспертным знанием, с виду сложная расстановка на доске окажется понятным шагом в последовательности ходов, за которые можно съесть уйму фигур и поставить мат.

Профессиональные спортсмены часто пользуются своими знаниями так же, как шахматные гроссмейстеры. В стремительных командных видах спорта – скажем, баскетболе или футболе – одних физических талантов недостаточно. Для истинного успеха нужно изучать игру и собирать арсенал схем, которые будут под рукой в нужный момент. Леброн Джеймс – один из величайших игроков в баскетбол за историю NBA и рекордсмен по очкам – известен также своей способностью в подробностях вспоминать, как разворачивались прошедшие игры. Сам Джеймс говорит, что обладает фотографической памятью, но его настоящая сила в том, что тренер NBA (и бывшая баскетбольная легенда Калифорнии) Джейсон Кидд называет «баскетбольным IQ». Словно шахматный гроссмейстер, Леброн опирается на свои знания об игре, чтобы мгновенно сжимать информацию о сложных последовательностях действий. Он может в реальном времени соотносить то, что видит, с обширной мысленной базой схем событий и делать точные прогнозы дальнейшего хода игры.

Джейсон Кидд говорит, что Леброн «играет, будто предвосхищая, что будет дальше. Человек с высоким баскетбольным IQ раньше других понимает, что произойдет дальше»[106]. Сам Леброн описывает свой баскетбольный IQ похожим образом: «Благодаря этому я видел, что случится, до того, как оно случится, отправлял ребят на позиции, знал, где находится каждый игрок, кто в ритме, кто выбился из ритма, какой счет, какое время, что творится у соперников, что им нравится и не нравится, и все это учитывал, оценивая игровую ситуацию».

В видеоигры с друзьями Леброн играет с тем же мнемоническим рвением. Его давний друг Брэндон Уимз выразился так: «Он помнит, как вы планировали игры в прошлом, когда играли в одной команде, так что в игре против тебя он будет подбирать команду, видя все твои стратегии насквозь… Любимые приемы тоже лучше придержать, потому что он будет помнить, как ты сыграл в такой же ситуации в прошлый раз, и будет подготовлен»[107]. Одно из конкурентных преимуществ Леброна в том, что он пользуется памятью с небывалой эффективностью.

Схемы позволяют видеть события насквозь, улавливать глубокие структурные связи. Таким образом память о сотнях, тысячах событий сжимается в формат, который позволяет делать выводы и предсказания о событиях, которых мы еще не пережили. Схемы позволяют пользоваться знанием о том, что произошло, чтобы упредить то, что произойдет.

Но, как я покажу в следующей главе, подобная генеративная система памяти имеет не только преимущества, но и потенциальные издержки. Если мы пользуемся одним и тем же знанием для разных событий – что будет, если чересчур полагаться на схемы и заполнять пробелы в памяти, все дальше отклоняясь от реального опыта?

4. Лишь мое воображение
Почему память неразрывно связана с воображением

Память воображаема, а не реальна.
Не стыдись ее стремления создавать.

[98] Я признателен Мику Раггу, пионеру когнитивной нейронауки, за разговор, вдохновивший меня на погружение в подробности исследований СПРРМ. Мик только что написал влиятельную обзорную статью, демонстрирующую, что вся СПРРМ показывает повышенную активацию, когда мы вспоминаем слова из списка для изучения (Rugg, Vilberg 2013), и указал на параллель между тем, что все наблюдали (и упускали из виду) в фМРТ-исследованиях памяти, и тем, что все наблюдали в фМРТ-исследованиях сетей мозга. Мик указал мне на отличную работу Рэнди Бакнера, Джесс Эндрюс-Ханна и Дэниела Шектера (2008), которая запечатлела эти параллели.
[99] Ranganath, Ritchey 2012.
[100] Говоря о «новых» данных, я имею в виду, что результаты из лабораторий Доллера (Milivojevic et al. 2015, 2016) и Нормана/Хэссона (Chen et al. 2017, Baldassano et al. 2017, 2018) привлекли мое внимание, но другие инновационные фМРТ-исследования памяти для естественных стимулов создали прецедент для размышлений об этих вопросах (например, Zacks et al. 2001, Swallowetal. 2009, Ezzyat, Davachi 2011).
[101] В нашей первой совместной публикации Ник Франклин (бывший тогда постдоком в лаборатории Сэма Гершмана) представил амбициозную вычислительную модель для объяснения схем, границ событий и реконструкции эпизодических воспоминаний (Franklinetal. 2020).
[102] См. Barnett et al. 2022, Reagh et al. 2020, Cohn-Sheehy et al. 2021, 2022 и Reagh, Ranganath 2023.
[103] Это данные из Reagh, Ranganath Я упростил описание, но призываю читателя ознакомиться с этим исследованием, чтобы получить больше информации. На самом деле мы обнаружили различия в трех различных подсетях СПРРМ. Задняя медиальная сеть (PMN) сохраняла разные коды памяти для каждого кафе и каждого супермаркета; медиальная префронтальная сеть (MPN) сохраняла общий код памяти для фильмов о супермаркетах и общий код памяти для фильмов о кафе; передняя височная сеть (ATN) сохраняла отдельный код памяти для каждого персонажа.
[104] Reagh et al. 2020 показали, что активность гиппокампа резко возрастает на границах событий во время просмотра фильма, а Barnett et al. 2022 показали, что функциональная связность гиппокампа с СПРРМ на границах событий предсказывала успешное кодирование воспоминаний о событии. Обратите внимание, что общая связность «СПРРМ – гиппокамп» не увеличивалась резко на границах событий, но увеличение связности было очевидно для успешно закодированных событий по сравнению с событиями, которые не вспоминались в последующем тесте памяти.
[105] Palmqvist et al. 2017.
[106] Rohlin M. Inside the Mind of LeBron James: An Exclusive Look at His Basketball IQ. Sports Illustrated, March 27, 2020.
[107] Windhorst B. Total Recall: LeBron's Mighty Mind. ABC News, July 22, 2014.