Происхождение вкусов: Как любовь к еде сделала нас людьми (страница 4)
Лукреций считал, что жирные продукты могут состоять из гладких атомов, а горькие или кислые – из изогнутых, шершавых и колючих. Это не так. На самом деле восприятие конкретной пищи любым животным определяется тем, как его вкусовые рецепторы связаны с мозгом. Переживаемое нами ощущение, связанное с солью, – чувство соленого – совершенно субъективно. Нам известно (благодаря детальным исследованиям на мышах и крысах), что у других животных есть точно такие же рецепторы, реагирующие на соленое, как у нас, и нам также известно, что эти рецепторы вызывают тягу к такой пище и удовольствие от нее, известно даже, при каких концентрациях, но мы не можем знать, как ощущается вкус соленого существами других видов. Мы не знаем наверняка, какое оно – это удовольствие от вкуса соленого, которое испытывают представители этих видов. Мы ничего не знаем о переживании вкусовых ощущений или удовольствия другими людьми, кроме нас самих. Мы всего лишь предполагаем, что они всегда одинаковы.
Рис. 1.1. Массовая доля наиболее распространенных и биологически «незаменимых» элементов в организме животных (горизонтальная ось) в соотношении с их содержанием в растениях (вертикальная ось). Элементы с положительными значениями имеют более высокую концентрацию в животных тканях, чем в растительных. Например, содержание натрия почти в 50 раз (на 5000 %) выше в организмах животных, чем растений. И наоборот, концентрация кремния (Si) немного выше в тканях растений, чем животных
Как вы видите на рисунке 1.1, натрий не единственный элемент, содержание которого в организме позвоночных, например млекопитающих, больше, чем в организме растений. Это относится и к азоту (N). В животных и растительных клетках азот обычно находится в составе аминокислот и нуклеотидов. Из аминокислот, как из кирпичиков лего, складываются белки, а из нуклеотидов – молекулы ДНК и РНК.
Животные, поедающие растения, будь то свиньи, люди или медведи, могут легко столкнуться с дефицитом азота в рационе. В среднем в организмах животных вдвое больше азота, чем в растениях (пропорционально массе их тел). Так каким же образом всеядные и травоядные виды справляются с этим дефицитом? Некоторые просто поедают вдвое (а то и в несколько раз) больше пищи, чем им требуется, и избавляются от излишков. Например, червецы, насекомые-паразиты, подобно тлям, пьют сахаристый сок, текущий по жилкам растения. При этом они усваивают из выпитого небольшие количества азота и столько сахара, сколько им нужно. Излишки сахара насекомые выделяют в виде сладких испражнений, которыми питаются муравьи, а люди порой едят как деликатес. (Считается, что манна небесная, упоминаемая в Библии, могла быть выделениями тамарискового маннового червеца, Trabutina mannipara, кормящегося на кустах тамариска.) Однако млекопитающим подобный подход не годится. Более удачным решением представляется наличие вкусового рецептора, реагирующего на азот либо какое-нибудь соединение, характерное для пищи, богатой азотом. Но до 1907 г. не были известны вкусовые рецепторы, реагирующие на азот или содержащие его аминокислоты и белки в пище.
Как-то раз в 1907 г. Кикунаэ Икеда, профессор химии Токийского императорского университета, ел бульон, который изменил его жизнь. Бульон назывался даси[11]. Икеда и раньше ел даси, но именно в этот раз поразился тому, какой он вкусный. Даси был соленый, чуточку сладковатый, к тому же там чувствовался привкус чего-то еще очень приятного. Икеда решил установить происхождение этого чрезвычайно приятного привкуса, который он позже назовет «умами». Слово «умами» происходит от японских слов «вкусный» (umai) и «сущность» (mi). Оно также означает «восхитительный вкус и уровень его восхитительности», а также «искусство, которым наслаждаются», особенно применительно к техникам живописи.
Рецепт даси на первый взгляд прост. Туда входят сухие хлопья ферментированного копченого тунца (кацуобуси){12}, вода и иногда особая водоросль (комбу). Икеда знал, что вкус дает не вода. Значит, его давали либо рыбные хлопья, либо комбу. Все, что требовалось Икеде, – это идентифицировать, какое соединение в рыбных хлопьях или в комбу дает вкус, который, как ему представлялось, он ощутил, – вкус умами. Проще сказать, чем сделать. «Простой» бульон даси может содержать тысячи химических соединений, потенциально способных давать какой-либо вкус или аромат. Икеде пришлось выделять эти соединения и проверять их одно за другим. Согласно рассказу Джонатана Сильвертауна в книге «Обед с Дарвином»[12], понадобилось 38 отдельных этапов, чтобы наконец выделить из водоросли комбу в супе какие-то зернистые кристаллы, которые казались относительно чистыми (содержали одно соединение) и имели вкус умами. Кристаллы оказались глутаминовой кислотой. Глутаминовая кислота – это аминокислота, строительный кирпичик белка, а потому надежный индикатор присутствия в пище азота. Вкус умами – это вкус, вознаграждающий нас за то, что мы добыли азот. Этот вкус, который придает пище глутаминовая кислота, влечет нас к необходимым нам аминокислотам. Но ощущение вкуса умами вызывает не только глутаминовая кислота.
Последующие исследования других японских ученых показали, что, помимо глутаминовой кислоты, вкус умами дают также два рибонуклеотида – инозинат и гуанилат. Этих двух рибонуклеотидов нет в водоросли комбу, но они содержатся в рыбных хлопьях. Когда инозинат или гуанилат воспринимается совместно с глутаминовой кислотой, они дают вкус суперумами, если можно так сказать. В бульоне даси как раз и ощущаются совместно глутаминовая кислота и инозинат. Даси отличается вкусом суперумами – вкусом, который одновременно чрезвычайно приятен и указывает на присутствие азота.
На протяжении десятилетий немногие ученые за пределами Японии верили результатам исследований Икеды (а тем более его последователей, работы которых были связаны с инозинатом и гуанилатом). Но не переживайте за Икеду: в 1908 г. он запатентовал метод изготовления глутамата натрия, то есть соединения натрия с глутаминовой кислотой. Благодаря этому патенту Икеда неплохо заработал[13]. Люди захотели платить за вкус умами даже прежде, чем поверили в его существование. Почему работа Икеды осталась без внимания за пределами Японии? Отчасти потому, что его первая статья была написана на японском языке и ее не смогли прочитать большинство ученых Европы и США. Но дело было не только в языке, проблема заключалась также в механизме восприятия. Хотя Икеда сумел показать, что кристаллы глутаминовой кислоты, будучи добавленными в пищу, улучшают ее вкус, он не установил, каким образом этот вкус ощущается во рту. Вкусовой рецептор умами (рецептор к глутаминовой кислоте) откроют лишь 90 лет спустя. Отдельный рецептор, реагирующий на инозинат и гуанилат, будет обнаружен еще позже. Только с их открытием вкус умами получит всеобщее признание большинства специалистов по сенсорному восприятию как один из вкусов, ощущаемых человеком.
На рисунке 1.1 вы видите, что к элементам, содержание которых в организме животных больше, чем в тканях растений, относится также фосфор (P). Концентрация фосфора в организме животных более чем в 20 раз выше, чем в тканях растений. Недостаток фосфора – важная проблема, с которой сталкиваются многие виды животных[14]. Почему в таком случае нет вкусового рецептора, который определяет наличие в пище фосфора и вознаграждает животное за то, что оно его нашло? Одно из возможных объяснений состоит в том, что пища, содержащая много азота, особенно такая, как целая туша животного, обычно также содержит и необходимое количество фосфора. Возможно, рецепторов к одному из этих двух элементов, необходимых для полноценного питания, оказалось достаточно. Природа часто упаковывает азот и фосфор вместе[15]. Однако это не объясняет, как находят фосфор травоядные, а также большинство всеядных. Впрочем, возможно, что у некоторых животных все-таки есть вкусовой рецептор, реагирующий на него.
Майкл Тордофф работает в Центре исследования вкуса и обоняния им. Амброза Монелла (в мире вкусов все дороги ведут в Центр им. Монелла). Он специализируется на лабораторных исследованиях малоизученных вкусов, в том числе вкуса фосфора. Исследования, проводящиеся с 1970-х гг., показывают, что мыши каким-то образом способны воспринимать на вкус соли фосфора. Не так давно Тордофф сумел продемонстрировать, что мыши, по-видимому, способны отличать низкую концентрацию этих солей (которая им нравится) от высокой (которая им не нравится)[16]. Тордофф предполагает, что большинство млекопитающих, включая людей, обладает способностью ощущать вкус солей фосфора и отличать приятные концентрации этих солей от неприятных[17]. После открытия умами, чтобы существование этого вкуса могло быть признано, надо было обнаружить вкусовой рецептор умами и изучить механизм его функционирования. В своих исследованиях вкуса фосфора Тордофф приближается к подобному же этапу. Недавно он обнаружил рецептор, который, вероятно, сигнализирует мышам о том, что они столкнулись с чересчур высокой концентрацией фосфора (в форме фосфатов)[18]. Никто, однако, еще не открыл рецептора, сообщающего им, что они нашли подходящую концентрацию. Возможно, когда-нибудь в ближайшее время вкус фосфора признают дополнительным вкусом, который способен воспринимать и человек.
Возможно, вы думаете, что открытие нового вкуса, причем такого, который вы ощущаете всякий раз, когда едите, повлекло за собой сотни исследований в этом направлении. Что ученый получил какую-нибудь премию или его пригласили рассказать о своем исследовании на телевидении. Ничего подобного пока не произошло. Что ни говори, мир полон тайн. Мы далеко не все знаем даже о том, что происходит у нас во рту. А потому на исследования Тордоффа о вкусе фосфора всего лишь ссылаются сравнительно немногочисленные авторы других работ. В одной из таких статей говорится о том, что кошки, как и мыши, предпочитают пищу с более высоким содержанием фосфора. Ныне фосфор добавляют (в форме фосфата) в большинство кошачьих кормов, чтобы стимулировать кошек его есть. Кошкам не нужно верить или не верить в результаты работ Тордоффа, чтобы ощущать удовольствие от вкуса фосфора. Между тем еще один элемент, которого в рационе животных существенно меньше, чем в их организмах, – это кальций. Тордофф считает, что обнаружил доказательства существования также и кальциевого рецептора.
Большинство элементов и соединений, которые мы получаем с пищей, необходимы для построения новых клеток и других компонентов тела. Поэтому они нужны нам в количествах, пропорциональных их относительной редкости или распространенности в нашем организме (вспомним все то же стехиометрическое уравнение). Кроме того, наш организм нуждается также в энергии для повседневной жизнедеятельности; раз уж здание построено, в нем должен гореть свет. Чем более активный образ жизни ведет животное, тем больше энергии ему требуется. Это касается как млекопитающих, так и насекомых. Например, самым активным и агрессивным муравьям необходим наиболее калорийный рацион[19]. Причем бо́льшую часть этой энергии животное – будь то муравей или слон – получает в результате расщепления соединений углерода.