От теории мышления к теории деятельности (страница 6)
Вместе с тем происходит перевертывание оснований… Вы утверждаете, что если вторая величина больше первой, а третья больше второй, то третья будет также больше первой. А если вдруг случится в какой-то эмпирической области, что это не так, вы скажете тогда, что то, с чем вы имеете дело, не величины. После того как вы сформулировали такой общий принцип, вы получаете возможность выводить из первых двух посылок третью. И вы говорите, что первые два утверждения – основание или причина, а третье утверждение – следствие. Здесь совершенно отчетливо выступает та форма представления объективной действительности, которую этот принцип создает благодаря своей структуре «если… то…»[17].
Эти общие принципы получили название аксиом вывода, и каждый тип вывода предполагает свою особую аксиому. А сам по себе тип вывода характеризуется рядом признаков, фиксируемых в правилах. Например, есть правило, запрещающее учетверение терминов силлогизма.
Значит, условием появления вывода как некоторого формального перехода от одних знаний к другим является появление особого знания, которое выражает само правило перехода. Только в этих случаях появляется вывод или умозаключение.
Опираясь на это понятие, мы можем теперь по-новому взглянуть на рассуждения Галилея и Гюйгенса. В частности, мы можем выяснить, что у них не было вывода – у них было рассуждение.
Если теперь мы опять вернемся к понятию вывода, то окажется, что обязательным и непременным условием вывода является однозначность в значениях терминов. Именно это условие Аристотель оговорил в правиле, запрещающем учетверение терминов силлогизма. Что касается рассуждения, то оказывается, что этот принцип на него уже не распространяется. Наоборот, термины в рассуждении, как выясняется, должны непрерывно и непременно менять свои значения.
Непонимание разницы между выводом и рассуждением приводит современных апологетов так называемых точных выводов и методов к смешным ошибкам и заблуждениям. Например, они говорят, что необходима символизация словесных рассуждений, ибо, только символизировав термины, мы сможем придать им точно фиксированные и неменяющиеся значения. Они считают, что движение, или рассуждение, в обычном словесном языке не удовлетворяет принципам точности и поэтому является плохим.
Можно даже утверждать, что если в рассуждении смысл терминов не будет меняться, то это значит, что рассуждение просто никуда не годное и не решает той задачи, ради которой оно ведется. Рассуждение есть движение, в котором строго закономерным образом меняются значения и смысл терминов. Именно этим объясняется то, что все попытки символизировать словесные рассуждения кончились полным крахом и рассуждения ведутся по-прежнему на обычном словесном языке. А все, что в этих рассуждениях символизируется, выступает уже не в роли знаковой формы, а в роли объектов оперирования. Словесный язык тем и силен, что входящие в него знаки могут употребляться для движения сразу по нескольким плоскостям замещения, следовательно, для фиксации сразу нескольких различных значений, для соединения их друг с другом. Объекты в рассуждении, напротив, никогда не обладают этим свойством, и оно им не нужно.
Правда, здесь еще необходимо выяснить, при каких условиях знаки того или иного рода могут выступать в роли исключительно объектов. Оперирование знаками как объектами было очень четко выявлено Давидом Гильбертом и исследовалось им. Это превращение знаков формы в знаки-объекты является вторым непременным условием формального вывода и формализации теорий. Представьте себе двухплоскостную систему, в которой знаки верхней плоскости приобретают строго определенные одинарные значения, независимо от их реальной отнесенности к объектам и содержаниям нижней плоскости. При этом условии они могут быть оторваны от нижней плоскости и стать объектами. Если это произошло, то мы можем сформулировать некоторые общие правила движения в знаках-объектах, независимые от их реального содержания, и поместить эти правила как бы над системой этих значков. Тогда все движения, все преобразования в них будут осуществляться совершенно формально в соответствии с правилами. На этом построена вся работа по формализации систем знания.
Таким образом, вся область рассуждений разбита нами теперь на две подобласти. Во второй из них находится особый вид рассуждений: выводы. Силлогистика Аристотеля является видом выводов. Таким образом, мы, естественно, приходим к двум группам вопросов:
1) какой же будет структура неформализованных рассуждений и как ее изображать и
2) что представляют собой другие виды формализованных рассуждений, отличные от силлогистики, и как они исследовались в истории науки.
Начнем со второго вопроса. В период, когда строил свою логику Аристотель, математика еще не имела такого развития, какое она получила в дальнейшем. Поэтому ее удельный вес в общей системе рассуждений был невелик. Аристотель формализовал широко распространенную словесную часть рассуждений, и в то время казалось, что таким образом охвачена вся основная часть рассуждений.
Но в дальнейшем, когда начала развиваться математика, то она, по сути дела, занималась тем же самым, чем Аристотель занимался для словесных рассуждений. При этом вполне возможно, что при этом математики принимали в качестве нормы для своей работы схемы, выработанные Аристотелем, а возможно, что и нет. Во всяком случае, продукт получился такой же: некоторые правила для построения выводов, содержащих символы математики. Можно сказать, что область, захваченная математикой, – это область формализаций других, не силлогистических выводов. Между прочим, в этом заключено объяснение того странного положения, о котором говорил Кант, что логика достигла полного совершенства, не отступила ни на шаг назад, хотя и не продвинулась вперед. Основание этого заложено в том, что формальная логика стала одним из математических исчислений.
Значит, историческое движение может быть представлено таким образом… Появилась логика; ее работа заключалась в том, что она формализовала один вид рассуждений, а именно силлогические умозаключения. И на этом остановилась, хотя тогда же, при стоиках и дальше, были уже обнаружены другие виды умозаключений и выводов, в частности, то, что стоики называли рассуждениями не по методу. Но логика не пошла по пути формализации этих новых видов рассуждений. Прежде всего, по-видимому, из-за того что эти рассуждения уже были захвачены математиками и формализованы в форме математики. Успех математики был настолько очевиден, что в дальнейшем она продолжала эту работу, осуществляя экспансию во всё новые и новые области. С этой точки зрения алгебра и дифференциально-интегральные исчисления, аналитическая геометрия, матричные алгебры и т. п. – все это такие же виды формального и формализованного рассуждения, как и силлогистическое рассуждение, но осуществляемые не словами, а на символах.
Однако всякая математика, как известно, действительно характеризуется завершенностью, она полна и непротиворечива. В этом ее особенность. И если формальная логика – не что иное, как вид математического исчисления, то она тоже должна быть полной и завершенной, и, следовательно, Кант был совершенно прав, характеризуя таким образом формальную логику. Выражение Канта справедливо по отношению к любой уже построенной математике. Понятным становится и то, почему в ХIХ столетии логика опять начала быстро развиваться и создала целый ряд новых формальных исчислений. Это объясняется тем, что Буль преодолел догматизм традиционных логических представлений и, совершив (с их точки зрения) ряд грубых ошибок, по форме соединил логику с математикой, таким образом прорвав существовавшие между ними в течение ряда веков границы. Логика взяла себе символические средства математики и таким образом открыла одно из своих исходных качеств – что она может пользоваться давно уже выработанными чисто математическими символами.
В то время еще казалось, что по характеру своего содержания логика является значительно более общей, чем всякая математика, и поэтому может рассматриваться как основание и фундамент всякого математического рассуждения. Исходя из этих мыслей, Рассел, Уайтхед, Кутюра и другие пытались построить всю математику на базе понятий логики. Это была линия логицизма. Но затем выяснилось, что это невозможно. Существенную роль в этом сыграл главный представитель интуитивизма Анри Пуанкаре. Но решающий вывод был сделан Давидом Гильбертом: логика не может быть основанием математики. И та и другая должны быть представлены в виде своих особых исчислений и должны употребляться вместе, наравне друг с другом. Таким образом был уничтожен второй разделительный рубеж между логикой и математикой. Фактически уже получилось – хотя осознание этого отставало, – что математическая логика есть не что иное, как несколько частных разделов самой математики. Можно считать, что история закончила один из своих дурацких циклов и в конце концов разъяснила нам действительное положение вещей. Правда, это разъяснение пришло несколько поздновато – для всего цикла понадобилось более 2000 лет.
Но история логики имела и другую сторону, принципиально отличную от первой. Ведь она появилась и на первых этапах развивалась не как формальная логика, а как «органон», то есть как теория познания и методология науки, как теория мышления. Построение формализованных языков явилось лишь одним из ее продуктов – и, по-видимому, побочным. А другую линию развития образовали попытки понять природу мышления. В этом русле мы имеем совсем иные имена: спор реалистов, номиналистов и концептуалистов в Средние века, средневековую теорию знака и значений, Бэкона, Галилея и Декарта, Гоббса и Локка, Юма и Беркли, Канта, Фихте и Гегеля, французских материалистов, неокантианцев и неогегельянцев, имманентов, критический реализм и позитивизм XX столетия. Первая линия была линией построения формализованного языка, вторая – линией эмпирической науки.
История логики как науки о мышлении – это история непрерывной борьбы с формальным и формализованным, история бунта против формализованной системы. Но теперь ретроспективно мы можем относиться к этой борьбе только с большим удивлением, потому что это была борьба против совершенно специфической формализованной части. По сути дела, она шла мимо. Рядом все это время бурно развивались другие математики. Но их кровное родство с формальной логикой оставалось незамеченным. Сейчас это представляется исключительно комическим. В ответ на вопрос, что понятно в природе мышления, всегда указывали на понятие формальной логики. Но это было чистое недоразумение.
Нам важно понять, что все схемы формальной логики – это не изображения мышления. Они возникают (и мы уже подробно рассматривали этот вопрос) как предписания для построения новых рассуждений. Лишь случайно, в силу ряда ошибок, они были истолкованы затем как схемы самих рассуждений или умозаключений. Борьба против формальной логики была оправдана лишь в той мере, в какой это была борьба против использования этих схем в качестве изображений процессов мысли.
Но эта борьба вместе с тем была бесплодной, поскольку никому до сих пор не удалось проанализировать реальное строение процессов мышления и найти для них особые изображения. Обсуждению тех затруднений, которые возникают при попытках проанализировать и описать строение процессов рассуждения, будут посвящены следующие лекции.
Лекция вторая. [От анализа научных текстов к анализу процессов и структур мышления]
В предшествующей лекции в связи с некоторыми сомнениями, которые я высказывал по поводу изучаемого предмета, было все же много положений, в которых нечто утверждалось и подчас довольно определенно. Начиная с сегодняшней лекции [изложение кардинально изменится]: будет мало определенных и резких утверждений.
