Вовлеченные сотрудники (страница 4)
Сервисы на основе искусственного интеллекта способны собирать информацию из разных источников, обобщая ее. Например, они анализируют информацию из внутренних социальных сетей, ежегодных опросов сотрудников, корпоративных мессенджеров, чатов в Skype или Zoom, веб-сайтов. Анализ тональности сообщений помогает оценивать уровень менеджмента и отношения сотрудников к действующим проектам.
Сервис способен не только оценивать уровень вовлеченности и удовлетворенности персонала, но и выявлять проблемы, связанные с выгоранием и плохим менеджментом. Например, алгоритм определяет, насколько заняты сотрудники в течение дня, кто недогружен, а кто перегружен работой. Сервисы способны не только действовать на опережение, информируя о ситуации лидеров, но и самостоятельно решать некоторые из проблем. Например, сервис Isaak[12] может предупредить руководителя, что он отправляет сотрудникам много писем в нерабочее время. Это заставляет их немедленно реагировать, что ведет к переутомлению и выгоранию. Анализируя тон письма, сервис может рекомендовать сотруднику исправить «недружелюбный» текст сообщения перед отправкой.
«Умные» сервисы помогают определять отношения между людьми, командами и отделами, анализируя организационные сети (ONA). Они выявляют неформальных лидеров и аутсайдеров, дают руководителям и HR-специалистам информацию о том, какие люди и команды сотрудничают продуктивно, а кому нужна помощь и поддержка.
Алгоритмы способны предсказывать отток персонала, выявляя сотрудников или команды, планирующие увольнение. Например, платформа Peakon[13] имеет алгоритм «прогнозирования увольнения», анализирующий общение сотрудников по ключевым словам, которые обычно используются перед собеседованием. Получив сведения, руководители или HR-менеджеры могут адаптировать свои стратегии удержания и найм, предотвратив тем самым увольнение ценного специалиста или проблему нехватки персонала.
Умные сервисы могут выявлять распространение негативных слухов или разглашение конфиденциальной информации. Такая практика уже существует в продажах и маркетинге. Сервисы сортируют неструктурированные отзывы клиентов на положительные и отрицательные. То же самое они способны делать и относительно оценки бренда работодателя.
Современные технологии анализируют информацию не только пассивно, но и рассылают открытые вопросы сотрудникам. Затем инструменты НЛП просматривают каждый ответ, анализируют настроение слов и предоставляют подробный отчет руководителям и HR-менеджерам.
Преимущества очевидны, но компаниям необходимо заботиться об уровне конфиденциальности сбора таких данных. Если сотрудники будут знать, что любая переписка и комментарии анализируются, будут ли они чувствовать себя в безопасности, будут ли откровенны? Очевидно, что любую технологию можно использовать как во вред, так и на пользу. Многие вспомнят пример, хорошо иллюстрирующий это: основатель компании Xsolla[14] Александр Агапитов 4 августа 2021 года опубликовал обращение об увольнении невовлеченных и малопродуктивных сотрудников на основании анализа их активности в рабочих чатах, почте, документах. Очевидно, что подобными действиями руководство наносит ущерб вовлеченности сотрудников и бренду работодателя. Поставьте себя на место сотрудников. Насколько комфортно им теперь будет работать в компании? Как действия руководства отразились на уровне их доверия к нему?
Поэтому в работе с опросами так важна конфиденциальность сбора и анализа данных, а также то, как руководство использует полученную информацию и работает с ней.
Вопрос конфиденциальности данных беспокоит не только пользователей, но и разработчиков таких сервисов. Например, сервис KeenCorp[15] не «собирает и не хранит в отчетах» информацию об отдельных сотрудниках. Вся информация, позволяющая идентифицировать личность, удаляется.
Машинный анализ текста все еще находится на стадии разработки. Пока нет уверенности в том, что он не регистрирует ложноположительные показания и улавливает все потенциальные угрозы. Но очевидно, что разработчики найдут решения и будут расширять области применения мониторинга настроений персонала, например, начнут анализировать не только письменную, но и устную речь и выражения лиц.
В настоящий момент пассивный анализ мнений лучше всего работает в сочетании с данными из других источников, таких как ежегодные опросы персонала, пульс-опросы, личные беседы руководителей, фокус-группы и анализ косвенных показателей.
Анализ косвенных показателей[16]
Коэффициент текучести кадров. Вовлеченные сотрудники хотят работать в компании долго, а невовлеченные уходят к конкурентам, поэтому коэффициент текучести – логичная метрика для определения вовлеченности команд. Подразделения или категории персонала, в которых текучесть высокая, как правило, имеют низкую вовлеченность. Однако стремиться к нулевому значению текучести не имеет смысла. Она полезна: в компанию приходят новые люди со свежим взглядом на проблемы.