Кокетливый интеллект (страница 4)
Поиск наилучшего кандидата для работы – действительно сложное занятие. Даже у людей едва получается с этим справляться. Действительно ли человек искренне радуется возможности получить работу в компании или он лишь хороший актер? Учли ли мы физические ограничения кандидата или разницу в культурах? Если в эту кашу бросить ИИ, отвечать на подобные вопросы станет еще сложнее. Для искусственного интеллекта понять нюансы шутки, уловить тон разговора или распознать отсылки к другой культуре – практически непосильная задача. А что, если кандидат вдруг упомянет нечто, относящееся к последним новостям? У ИИ, обученного на прошлогодних данных, не будет и шанса понять, о чем идет речь, – и в результате он «накажет» кандидата, присвоив ему низкий балл за то, что он якобы говорит бессмыслицу. Чтобы делать свое дело хорошо, ИИ должен обладать широким набором навыков и принимать в расчет огромный объем информации. В противном случае нас ждут неприятности.
Тревожный признак № 2. Проблема заключается совсем в другом
С проектированием ИИ для подбора кандидатов есть такая загвоздка: на самом деле мы просим ИИ отбирать не наилучших кандидатов, а тех, которые в наибольшей степени напоминают кандидатов, понравившихся HR-специалистам в прошлом.
Может, это не так уж и плохо, если те специалисты всегда действовали безошибочно. Но в большинстве компаний в США есть проблема с культурно-гендерным разнообразием; в особенности она характерна для менеджеров и в еще большей степени проявляется, когда менеджеры по кадрам оценивают резюме и проводят собеседования. При прочих равных условиях резюме кандидатов с именами белых мужчин скорее пройдут на этап интервьюирования, чем резюме с женскими именами или именами, характерными для национальных меньшинств[13]. Даже HR-специалисты, принадлежащие к женскому полу или национальным меньшинствам, непроизвольно отдают предпочтение белым кандидатам-мужчинам.
Большое количество плохих или откровенно вредоносных ИИ-программ были созданы людьми, которые думали, что проектируют искусственный интеллект для решения одной конкретной задачи, но, не ведая того, научили машину делать нечто совсем иное.
Тревожный признак № 3. ИИ находит легкие пути
Помните ИИ – определитель рака кожи, который на самом деле оказался распознавателем линеек? Искать малозаметные различия между здоровыми клетками и раковыми сложно, и поэтому ИИ решил, что куда проще проверить, есть на изображении линейка или нет.
Если вы предложите ИИ для выявления лучших кандидатов обучающие данные, где есть смещение (а так почти наверняка и произойдет, если только вы не проделаете предварительно огромную работу, устранив нежелательный перекос), то вы подскажете ему легкий способ улучшить точность выбора кандидатов с «наилучшими качествами»: отбирать белых мужчин. Это намного легче, чем анализировать нюансы того, как человек выбирает слова. ИИ может найти где еще можно срезать путь – скажем, если мы снимали всех кандидатов, успешно прошедших конкурсный отбор, определенной камерой, есть риск, что алгоритм начнет читать метаданные видео и отбирать только тех, кого снимали той же камерой.
Искусственный интеллект всегда будет идти к цели самым коротким путем – просто потому, что не видит пути лучше!
Тревожный признак № 4. ИИ учился на основе дефектных данных
В IT есть старое выражение: мусор на входе – мусор на выходе. Если задача алгоритма – имитировать действия людей, принимающих некорректные решения, то для него достичь совершенства – значит в точности воспроизводить те решения с недостатками и прочим.
Дефектные данные – неподходящие примеры для обучения или симуляции со странной физикой – вгонят ИИ в бесконечный цикл или направят по неверному пути. Во многих случаях проблема, с которой ИИ надо справиться, кроется в самом обучающем наборе, и неудивительно, что решения он в итоге находит дефектные, ведь такими были и входные данные. Фактически тревожные признаки № 1−3 чаще всего и говорят о проблемах с данными.
ОБРЕЧЕННЫЙ ИЛИ ВОСХИТИТЕЛЬНЫЙ
Пример с системой подбора кандидатов, увы, не выдумка. Многие компании уже предлагают системы скрининга (фильтрации) резюме или видеоинтервью на основе искусственного интеллекта, и редко кто делится информацией о том, как они устранили искажения и что сделали для более широкой представленности разных культур, а также людей с ограниченными возможностями. Сложно выяснить, какую именно информацию их алгоритм использует при отборе. При должной аккуратности создать ИИ для скрининга резюме, который окажется измеримо меньше предвзят, чем HR-менеджеры, вполне реально, но пока нет подтверждающей это статистики, можно быть уверенным, что искажения никуда не делись.
Справится алгоритм с задачей или нет, по большей части зависит от того, подходит ли в принципе для ее решения ИИ. Во многих задачах ИИ в самом деле показывает бо́льшую эффективность по сравнению с человеком. Давайте выясним, что это за задачи и почему ИИ в них так хорош.