Форма реальности (страница 7)

Страница 7

Топология – это нечто подобное, только для фигур. В своей нынешней форме она восходит к Анри Пуанкаре. Опять он! Это имя мы будем слышать не раз, поскольку Пуанкаре приложил руку к ошеломительно широкому диапазону геометрических идей – от специальной теории относительности до теории хаоса и тасования карт. (Да, тут тоже есть теория, и это тоже геометрия; мы к ней еще вернемся.) Пуанкаре родился в 1854 году в Нанси в состоятельной семье профессора медицины. В пятилетнем возрасте он серьезно заболел дифтерией и несколько месяцев совершенно не мог говорить; мальчик полностью выздоровел, но все детство был физически слабым. Уже взрослого один студент описывал его так: «Прежде всего я вспоминаю его глаза[74]: близорукие, но яркие и проницательные. В остальном в памяти хранится образ невысокого сутулого мужчины с неуклюжими движениями туловища и конечностей». Когда Пуанкаре был подростком, немцы захватили Эльзас и Лотарингию, хотя Нанси остался под властью Франции. Неожиданное и абсолютное поражение во Франко-прусской войне стало национальной трагедией; Франция не только решила вернуть утраченные территории, но и стала воспроизводить ту бюрократическую эффективность и технологическую компетентность, которую сочла причиной военного превосходства Германии. Подобно тому как запуск советского спутника привел к волне финансирования научного образования в Соединенных Штатах в конце 1950-х годов, утрата Эльзаса[75] и Лотарингии побудила Францию догнать Германию с ее лучше организованными научными учреждениями. Пуанкаре, который изучил немецкий язык во время оккупации, принадлежал к новому авангарду французских математиков, получивших современную подготовку и превративших Париж в один из математических центров мира с лидером в лице Пуанкаре.

Пуанкаре был выдающимся студентом, но не вундеркиндом: его первая серьезная работа появилась, когда ему было около 25 лет, а всемирно известной фигурой он стал только в конце 1880-х годов. В 1889 году он получил[76] премию шведского короля Оскара за лучшее эссе по задаче трех тел, в которой требуется определить положение трех небесных тел, двигающихся под действием гравитации. Эта задача не до конца понята и в XXI веке, однако в своей статье Пуанкаре заложил основы теории динамических систем – метода, используемого современными математиками для изучения как задачи трех тел, как и тысяч других проблем.

Пуанкаре отличался редкой пунктуальностью[77] и работал над математическими проблемами ровно четыре часа в день – с десяти утра до полудня и с пяти до семи вечера. Он верил в крайнюю важность интуиции и бессознательной работы, однако его карьера была в каком-то смысле очень методичной: ее характеризовали не столько яркие моменты озарения, сколько систематическое и неуклонное расширение царства познаваемого на территории тьмы по четыре часа в будни и никогда – по выходным. С другой стороны, у Пуанкаре, как известно, был ужасный почерк, а поскольку он одинаково владел обеими руками, в Париже ходила шутка[78], что Пуанкаре может писать одинаково хорошо, то есть одинаково плохо, любой рукой.

Он был не только самым выдающимся математиком своего времени[79], но и популяризатором науки для широкой публики: его книги, рассказывающие о таких модных темах, как неевклидова геометрия, радий или новые теории бесконечности, расходились десятками тысяч экземпляров и были переведены на английский, немецкий, испанский, венгерский и японский языки. Он был мастером слова с особым талантом выражать математическую идею в каком-нибудь тонком изречении. Вот одно из них, весьма подходящее для стоящей перед нами задачи:

Геометрия – это искусство делать хорошие выводы из плохих чертежей[80].

Иными словами, если мы с вами собираемся поговорить об окружности, мне нужно, чтобы нам было на что смотреть, поэтому я беру лист бумаги и рисую ее.

Если у вас педантичное настроение, вы можете возразить, что это не окружность; возможно, у вас есть линейка и вы проверяете, что расстояние от предполагаемого центра до каждой точки предполагаемой окружности вовсе не одинаково. Ладно, соглашаюсь я, но, когда мы говорим о числе дырок в круге, это неважно. В этом отношении я следую примеру самого Пуанкаре, который – в соответствии со своим изречением и своим ужасным почерком – рисовал фигуры отвратительно. Его ученик Тобиас Данциг вспоминал: «Окружности, которые он рисовал[81] на доске, были чисто формальными, они напоминали настоящие только тем, что были замкнутыми и выпуклыми»[82].

Для Пуанкаре и для нас все это – окружности.

Даже квадрат – это окружность![83]

И эта дурацкая загогулина – тоже[84].

Но вот это не окружность,

потому что в ней есть разрыв. Разорвав окружность, я совершил нечто более необратимо жестокое, нежели сминание, сгибание и даже загибание углов. Я действительно изменил ее форму, превратив в плохо начерченный отрезок вместо плохо начерченной окружности, и перешел от объекта с дырой внутри к объекту без дыры.

Вопрос об отверстиях в соломинке кажется топологическим вопросом. Нужно ли двум математикам знать точные размеры соломинки, действительно ли она прямая и представляет ли ее поперечное сечение идеальный круг, который одобрил бы Евклид? Конечно же, нет. На каком-то уровне они понимают, что от этих вещей при достижении их целей можно спокойно отказаться.

Но что останется, когда вы от них откажетесь? Пуанкаре советует нам взять соломинку и укорачивать, укорачивать и укорачивать ее. Однако для него это все та же соломинка. Очень скоро она превратится в узкую полоску пластика.

Можно пойти дальше и разогнуть стенки наружу, чтобы получилась плоская фигура на странице книги.

Официальное геометрическое название такой фигуры, заключенной между двумя окружностями, – кольцо, хотя вы можете считать это грампластинкой, или летающим кольцом Aerobie, или чакрамом – индийским метательным оружием XVII века с острым, как бритва, внешним краем. Как бы вы его ни назвали, это все равно плохо нарисованная соломинка и у нее всего одно отверстие.

Если топология настаивает, что в соломинке всего одно отверстие, то что она говорит насчет штанов? Мы можем укоротить их, как делали с соломинкой. Сначала они станут шортами, а потом и стрингами. Когда я разложу стринги на странице книги, которую вы читаете, вы увидите двойное кольцо,

в котором явно два отверстия. Итак, мы пришли сейчас к заключению, что у соломинки одно отверстие, а у штанов – два.

ШТАНЫ НЁТЕР

Но проблемы еще не закончились. Если в штанах два отверстия, то какие? При вышеописанном процессе укорачивания это штанины, а талия становится внешним краем. Но вы могли заметить, складывая белье, что с равным успехом можете сделать стринги по-другому, когда одна «штанина» станет внешним краем, а вторая «штанина» и талия будут двумя дырками.

Моя дочь, вовсе не знакомая с работами Пуанкаре, сказала, что штаны имеют два отверстия, аргументируя это тем, что отверстие в пояснице – это комбинация отверстий в ногах. Она права! И лучший способ это понять – серьезно воспринять аналогию между штанами и соломинкой. Попробуйте представить соломинку, через которую пьете солодовый молочный коктейль, в виде штанов. Вы можете окунуть одну штанину в бокал и тянуть напиток: через штанину заходит, а через талию выходит к вам в рот одно и то же количество жидкости. Вы можете сделать то же самое с другой штаниной, а можете опустить в коктейль обе. Но что бы вы ни делали, по закону сохранения молочного коктейля его количество, выходящее из талии, равно сумме количеств, поступающих через штанины. Если в левую штанину поступает 3 миллилитра коктейля в секунду, а в правую – 5 миллилитров в секунду, то сверху вытечет 8 миллилитров напитка[85]. Вот почему моя дочь права, сказав, что отверстие для талии – на самом деле не новое отверстие, а комбинация двух отверстий для ног.

Так значит ли это, что отверстия для ног – настоящие дырки? Не торопитесь. Всего секунду назад, складывая только что постиранные стринги, мы считали, что никакой разницы между «штанинами» и талией нет. Однако сейчас, похоже, талия снова играет особую роль: 3 + 5 = 8, но не 5 + 8 = 3 или 8 + 3 = 5.

Тут требуется аккуратность в отношении положительных и отрицательных чисел. Выходящий поток противоположен входящему, поэтому нужно брать его с обратным знаком: вместо того чтобы говорить, что 8 миллилитров вытекают через талию соломинки, мы скажем, что втекают – 8 миллилитров! И теперь у нас есть красивое симметричное описание: сумма потоков через три входа равна нулю. Чтобы описать полную картину протекания коктейля через штаны, я просто должен назвать два числа из трех, причем неважно, какие именно два. Подойдет любая пара.

Теперь мы готовы исправить ту ложь, что сказали ранее. Должен признать, не совсем верно говорить, что отверстие вверху соломинки (настоящей соломинки) – это то же самое отверстие, что и внизу. Но оно и не абсолютно новое. Отверстие вверху – это негатив отверстия внизу. То, что втекает в одно, должно вытекать из другого.

Математики и до Пуанкаре (особенно тосканский геометр и политик Энрико Бетти) боролись с вопросом, как задать форму нескольким отверстиям, однако именно Пуанкаре первым понял, что одни отверстия могут быть комбинациями других. Но даже он не думал об отверстиях так, как нынешние ученые; для этого пришлось ждать работу немецкого математика Эмми Нётер в середине 1920-х. Нётер ввела в топологию понятие группы гомологий, и с тех пор мы используем именно такое понимание отверстий.

Нётер выражала свои идеи на языке «цепных комплексов» и «гомоморфизмов», а не штанов и молочных коктейлей, но я буду придерживаться наших нынешних понятий, чтобы избежать болезненного стилистического перехода. Новаторство Нётер заключалось в том[86], что неправильно думать о дырах как о дискретных объектах, скорее это похоже на направления в пространстве.

Сколько направлений вы можете проложить на карте? В каком-то смысле вы можете двигаться в бесконечном множестве направлений: на север, юг, восток, запад; на юго-запад или северо-северо-восток; держать курс точно на 43,28 градуса к востоку от южного направления. Однако суть в том, что при всем богатстве выбора есть только два основных направления, в которых вы можете путешествовать: вы доберетесь куда угодно, комбинируя всего два направления – на север и на восток (если будете считать 10-мильное путешествие на запад отрицательным 10-мильным путешествием на восток).

Однако нет смысла спрашивать, какие два направления будут основными, из которых следуют все остальные. Любая пара ничем не хуже другой; можно выбрать север и восток, юг и запад, северо-запад и северо-северо-восток. Единственное, что вы не можете сделать, так это выбрать два совпадающих или противоположных направления, поскольку тогда вам придется ограничиться движением по одной линии.

Верх и низ соломинки – полные противоположности, север и юг. Здесь можно обнаружить только одно измерение. Талия и штанины, напротив, заполняют два измерения, например:

Проехав в одном из этих направлений, затем во втором, затем в третьем, вы вернетесь в исходную точку.

Три направления аннулируют друг друга, давая в сочетании ноль.

«Сегодня это считается самоочевидным[87], – писали Павел Александров и Хайнц Хопф в своем фундаментальном труде по топологии 1935 года, – однако восемь лет назад это было не так. Потребовалась энергия и индивидуальность Эмми Нётер, чтобы сделать это знание обычным для топологов. Благодаря ей оно стало играть современную роль в задачах и методах топологии».

[74] Прежде всего я вспоминаю его глаза: Galina Weinstein, “A Biography of Henri Poincaré–2012 Centenary of the Death of Poincaré,” ArXiv preprint server, July 3, 2012, 6; https://arxiv.org/pdf/1207.0759.pdf.
[75] Утрата Эльзаса: Gray, Henri Poincaré, 18–19.
[76] В 1889 году он получил: June Barrow-Green, “Oscar II’s Prize Competition and the Error in Poincaré’s Memoir on the Three Body Problem,” Archive for History of Exact Sciences 48, no. 2 (1994): 107–31.
[77] Пуанкаре отличался редкой пунктуальностью: Weinstein, “A Biography of Henri Poincaré,” 20.
[78] В Париже ходила шутка: Tobias Dantzig, Henri Poincaré: Critic of Crisis (New York: Charles Scribner’s Sons, 1954), 3.
[79] Он был не только: Gray, Henri Poincaré, 67.
[80] Геометрия – это искусство: “La Géométrie est l’art de bien raisonner sur des figures mal faites.” Henri Poincaré, “Analysis situs,” Journal de l’École Polytechnique ser. 2, no. 1 (1895): 2.
[81] Окружности, которые он рисовал: Dantzig, Henri Poincaré, 3.
[82] Термин «выпуклый» означает примерно «выгибающийся только наружу, а не внутрь». Подробнее об этом – в главе 14, где мы встретимся с еще более вычурными формами избирательных округов.
[83] Точнее, так: квадрат – это окружность, если нас интересуют топологические вопросы, например: сколько отверстий в фигурах, которые они ограничивают, или на сколько частей распадаются такие фигуры. Если же вас волнуют вопросы вроде «сколько касательных можно провести к кривой в одной точке», то квадрат и окружность сильно отличаются.
[84] Хотя эта фигура не является всюду выпуклой. Прим. науч. ред. [Научный редактор всегда должен быть в педантичном настроении. Прим. науч. ред.]
[85] Нет, я не знаю, как вы умудряетесь пить коктейль, чтобы через одну соломинку проходило в 12/3 раза больше жидкости, чем через другую. Но вы уже подарили мне соломинку в форме штанов, так что с равным успехом можете продолжать этот мысленный эксперимент.
[86] Новаторство Нётер: ради справедливости по отношению к Пуанкаре отметим, что Леопольд Вьеторис, работавший на заре топологии и скончавшийся в 2002 году в возрасте 110 лет, указывал, что Пуанкаре понимал, что штаны образуют пространство, но не выразил это в своей работе. Я предпочитаю действия Нётер. (Saunders Mac Lane, “Topology Becomes Algebraic with Vietoris and Noether,” Journal of Pure and Applied Algebra 39 (1986): 305–07.) Сам Вьеторис независимо от Нётер и примерно в то же самое время формализовал это же понятие, однако в те дни математические результаты Вены не сразу становились известны в Геттингене, и наоборот.
[87] Сегодня это считается самоочевидным: “Diese Tendenz scheint heute selbstverstandlich; sie war es vor acht Jahren nicht; es bedurfte der Energie und des Temperamentes von Emmy Noether, um sie zum Allgemeingut der Topologen zu machen und sie in der Topologie, ihren Fragestellungen und ihren Methoden, diejenige Rolle spielen zu lassen, die sie heute spielt.” Paul Alexandroff and Heinz Hopf, Topologie I: Erster Band. Grundbegriffe der Mengentheoretischen Topologie Topologie der Komplexe Topologische Invarianzsätze und Anschliessende Begriffsbildungen Verschlingungen im n-Dimensionalen Euklidischen Raum Stetige Abbildungen von Polyedern (Berlin: Springer-Verlag, 1935), ix. Благодарю Андреаса Зигера за помощь в переводе этого абзаца.