Телесный интеллект (страница 3)
В Бирмингемском университете расположена одна из самых престижных кафедр по изучению альфа-волн и их роли во внимании. Учёные кафедры успешно интерпретируют церебральный альфа-ритм как сигнал СТОП, именно благодаря тому, что мы только что видели: из-за его роли в сдерживании отвлекающих факторов и способствованию локализации внимания. Для мозга так же важно стимулирование, как и замедление, то есть активация, а не торможение. Пытаясь предотвратить ошибку, мозг увеличивает количество альфа-волн до 25 % непосредственно перед ошибочным действием. Этот защитный механизм ослабевает, когда мы делаем что-то автоматически, как обычно говорят, «на автомате». Важность альфа-волн для мозга очевидна, однако не следует путать оптимум с максимумом. Существует явление, называемое «альфа-вторжение», когда нейроны колеблются на этой частоте вместо той, которая требуется в моменте. Это особенно актуально перед сном. Мы знаем, что сон требует медленных мозговых колебаний, дельта или тета, когда нейроны замедляют свою активность, чтобы отключиться от внешнего мира. Если непосредственно перед сном мы очень активно занимаемся умственной деятельностью, мы увеличиваем присутствие быстрых волн. Например, медитация усиливает альфа-ритм более чем на час после завершения практики.
Просмотр экранов также распространяет быстрые ритмы по обширному нейронному пространству. Ритмы, которые не прекращаются, когда выключается экран, какое-то время остаются отголосками в нашем мозге. Когда мы решаем заснуть, не будучи сонными, мы считаем само собой разумеющимся послушный и немедленный нейронный ответ, но это не так. Наш мозг все еще наполнен более быстрыми волнами, чем это требуется для засыпания, потому что мы были более активны, чем должны. Когда вместо дельты появляется альфа, происходит прерывание, связанное с фибромиалгией[3] и некоторыми психическими расстройствами. Для заботы о качестве сна важно научиться готовиться ко сну. Мозг не является системой немедленного реагирования, а переходные этапы очень важны.
Дельта-ритм с испусканием нейронных электрических разрядов частотой от 1 до 4 Гц в основном связан со сном. Это самые медленные волны, но с самой высокой амплитудой в головном мозге. Колебание нейронов очень медленное, но очень громкое, взаимосвязь всегда противоположна. Процесс сна происходит в продолжительной форме. Мозг постепенно засыпает, поскольку нейроны перестают реагировать на стимулы, исходящие от органов чувств. Это молчание распространяется по головному мозгу до определенного уровня, пока не погружает нас в сон. В процессе мозг может обнаружить области, которые остаются очень активными из-за недавних стимулов и вторжения альфа-ритмов, – они затрудняют распространение тишины и, следовательно, закрепление сна. По мере сна нейроны начинают колебаться в дельта-ритме. Когда более 50 % нейронов разряжаются, мы входим в самые глубокие фазы сна. Крайней степенью глубокой фазы сна является анестезия, где наличие этих волн измеряется как показатель состояния бессознательного состояния. Дельта-волны преобладают у детей, в среднем с момента рождения до возраста пяти лет, и уменьшаются в подростковом возрасте. Процесс взросления также измеряется вариациями дельта-ритма: по мере взросления ребенка дельта-волны уменьшаются. Дельта-волны склонны постепенно исчезать в течение жизни, их практически нет в пожилом возрасте. Однако у людей с травматическим или нейродегенеративным поражением головного мозга наблюдается замедление динамики нейронов, характерное для патологической старости. Наличие медленных волн не связано только со сном или патологией, наблюдается также их участие и в таких процессах, как принятие решений, наблюдение за окружающей средой, стремление к вознаграждению и автономное управление телом. То, на что направлено действие волн, зависит от мозговой задачи. Смысл языка – в его употреблении, говорил философ Кьеркегор.
Тета-ритм со спектральным диапазоном от четырех до восьми электрических разрядов в секунду – это медленный ритм, оказывающий сильное влияние на когнитивные функции. Он присутствует в основном в гиппокампе, структуре мозга, наиболее вовлеченной в память, и известен как тета-ритм гиппокампа. Этот ритм связан с формированием воспоминаний, обновлением информации и обучением и является ключом к пространственно-временной организации событий. Учитывая роль тета-волн в развитии способности к изучению и запоминанию, сегодня большие усилия направлены на разработку искусственных устройств, которые увеличивают присутствие этих волн у людей с повреждением головного мозга или болезнью Альцгеймера. Тета-волны необходимы мозгу для получения информации о положении нашего тела и места в пространстве. Тета-ритм устанавливает тесную связь между памятью и нашим местом в пространстве. Когда мы вспоминаем событие, обычно мы ссылаемся на место, где мы были. «Я была в университетской библиотеке, когда услышала о терактах в Нью-Йорке», – так я обычно говорю каждую годовщину теракта. И воспоминание о том, где мы были, помогает нам вспомнить этот факт. Эту функцию выполняют «нейроны места» гиппокампа, которые генерируют ментальную карту с положением, которое мы занимаем в пространстве, и при необходимости разрабатывают стратегию движения. Первая часть тета-цикла задействована в расчете положения, которое мы занимаем в настоящий момент, а вторая часть – в оценке или планировании того, какой будет наша траектория. Это открытие было удостоено Нобелевской премии в 2014 году. Так что мозг постоянно обрабатывает информацию о нашем местоположении в среде и проектирует будущие позиции. Полученная информация связывается с воспоминаниями о переживаемом нами опыте. Поза нашего тела – невидимая для нас часть воспоминаний. Одним из методов усиления действия тета-волн является медитативная практика, состоящая в осознании того места, которое мы занимаем, и пространства, которое нас окружает. Наше положение, движение, память и восприятие сливаются в тета-волны. Как и дельта-волны, тета-колебания также уменьшаются с возрастом, являясь маркером развития нервной системы.
Бета-ритм представляет собой колебания, возникающие в диапазоне от 12 до 30 Гц. Как и альфа-волны, бета-колебания раньше считались ненужным шумом в головном мозге и не были предметом исследования нейронного языка. Различные эксперименты 1990-х годов изменили курс нейронауки и признали функциональную роль обоих ритмов. Бета-волны – один из ритмов организма, наряду с тета-ритмом, который более вовлечен в двигательную активность тела. Любая задача, требующая движений, должна подразумевать бета-десинхронизацию, то есть нейронный паттерн, синхронизированный в указанном ритме, должен быть нарушен, чтобы выполнить движение. Должна быть нарушена стабильность. Его присутствие в моторной коре связано с мышечными сокращениями, исчезающими до и во время движения.
Гамма-ритм, самый быстрый в головном мозге, охватывает от 30 до 100 электрических разрядов в секунду. Он может достигать 150 Гц. Это ритм, влияющий на внимание. Разница между выполнением задачи, связанной с вниманием, или выполнением того же с меньшими ресурсами внимания, или на автопилоте, заключается в количестве быстрых колебаний, которые мы задаем. Высокие гамма-ритмы, до 50 Гц, участвуют в процессах восприятия и памяти, в то время как очень высокие гамма-ритмы, близкие к 100 Гц, наблюдаются, когда мы обрабатываем информацию высокого уровня, такую как самонаблюдение или метапознание, эмпатия, сострадание. Интересно, что очень высокий гамма-ритм также является эпилептогенным, предшествующим эпилептическим припадкам. Основываясь на этой клинической взаимосвязи, некоторые авторы осмелились утверждать, что мистические переживания можно объяснить эпилептическими событиями. Помимо этого редукционизма, научная литература просит проявлять осторожность при практике медитации у людей, склонных к эпилепсии. Мозг при этом заболевании представляет собой систему, очень склонную к синхронизации, поэтому действия, способствующие возникновению сильных колебаний, нецелесообразны. Гамма-ритм также участвует в восприятии времени. Учитывая скорость его загрузки, он действует как часы с точным и правильным ходом времени. Те переживания, которые мы проживаем с полным вниманием, имеют большее присутствие гамма-волн, которые позволяют нам лучше оценивать время и с большей точностью или в деталях запоминать информацию. Учитывая его связь с тета-волнами гиппокампа, гамма-ритм также важен для памяти. Напротив, когда мы переживаем опыт в состоянии «автопилота» или не осознавая того, что мы пережили, происходит уменьшение гамма-волн, что затрудняет консолидацию памяти – это явление, известное как «автоматическая амнезия». Такие провалы в памяти в основном влияют на автобиографическую память, сильно зависящую от гамма-волн. По мнению профессора Шактера из Гарвардского университета, моменты забвения влияют больше на эпизодическую память, относящуюся к нашим переживаниям, чем на семантическую память. Вам будет легче вспомнить, где вы были, чем то, что вы там чувствовали.
Воспринимать значит интерпретировать
Как странно бродить в туманной округе!
«В тумане[4]», Герман Гессе
Замкнут каждый куст и цветок,
Стволы не ведают друг о друге,
Каждый из них – одинок.
Когда-то я стольких друзей обнимал,
И жизнь моя исходила светом,
А нынче сошел туман,
И все до единого скрылись при этом.
При свете не станешь умным,
Но будет сумрак пролит —
И вдруг струеньем бесшумным
Тебя ото всех отделит…
Как странно бродить в туманной округе!
Уединенность – наш рок,
Люди не ведают друг о друге,
Каждый из них – одинок.
Когда Герман Гессе идет по лесу, я полагаю, по немецкому Сальва Негра, образ деревьев мимолетно движется к рецепторам сетчатки его глаз. Они являются первым препятствием между миром и нами. Так же, как кожа, слух, обоняние и вкусовые рецепторы. Дерево, уже преобразованное в глазу в биологическую электромагнитную волну, бесшумно движется по зрительному нерву, пока не достигает главного рецептора мозга – таламуса, расположенного в его центре. Оттуда информация распространяется через системы памяти в гиппокамп и в миндалевидное тело. Все эти структуры являются подкорковыми, то есть находятся глубже коры головного мозга и поэтому обрабатывают информацию, о которой мы не догадываемся. До сих пор общепризнано, что мы осознаем только ту информацию, которая достигает поверхностной части мозга, коры больших полушарий; остальное остается в тумане. В своем «путешествии» от рецепторов, например рецепторов глаз, к коре, такая информация не осознается нами. Большую часть времени все, что вокруг нас, остается в тумане. Прошло около 100 миллисекунд между моментом, когда изображение дерева достигло сетчатки Гессе, и его разрушением лимбическими системами. Восприятие начинает блуждать в тумане, который задерживает момент осознания. Продолжая оставаться в тумане, лимбическая, или эмоциональная, система информирует гипоталамус, чтобы тот передал свой вердикт телу, внутренним органам и ощущениям. Гессе, будучи чувствительным и чутким, будет ощущать на своей коже элегантность величественной ели, даже не осознавая еще, что уже видел ее. Жизнь и одиночество перепутаны. Ощущения тела предшествуют получению сознательного опыта. Тело уже знает то, что разум еще не осознал, я не перестану это повторять. Как только информация обрабатывается в бессознательных, или подкорковых, системах, знание о ели наконец достигает коры головного мозга. В это волшебное мгновение Гессе осознает елку почти через полсекунды после того, как его глаза увидели ее. Но для нас это мгновенное событие. Теперь, когда опускается туман, он стер их всех.
Информация о ели достигла первичной зрительной коры в задней, или затылочной, части мозга. В этой области мозга, одной из самых крупных, находятся нейронные цепи, обрабатывающие характеристики увиденного изображения. Одна рабочая группа нейронов будет обрабатывать форму, другая – цвет, третья – положение и так далее с бесконечным количеством деталей. В головном мозге, как и в кишечнике, все сгруппировано. Каждая группа нейронов, специализирующихся на каком-либо вопросе, хранит свою секретную тайну, дерево не видит других деревьев, пока это не дойдет до сознания.