Принцип эксперимента (страница 5)

Страница 5

До 1970-х годов, если пациенту требовалось сделать сканирование мозга, врачи выполняли так называемую пневмоэнцефалографию. В основании позвоночника или непосредственно в черепе просверливали отверстие, после чего откачивалась большая часть спинномозговой жидкости (ликвора). Затем в полости мозга закачивался воздух или гелий, чтобы создать пузырь между мозгом и черепом. Пациента пристегивали ремнями к вращающемуся креслу, ставя его в разные положения (например, вверх ногами и боком), чтобы пузырь воздуха перемещался в головном мозге и позвоночнике, пока делались рентгеновские снимки в каждом положении. И без того больной человек был вынужден терпеть ужасную боль и тошноту, причем часто процедура проводилась без анестезии. Все это делалось только для того, чтобы получить достаточный контраст на рентгеновском снимке и суметь отличить мозг от (теперь уже откачанной) мозговой жидкости. После этого мучительного опыта врачи изучали рентгеновские снимки, надеясь определить, была ли форма мозга слегка искажена из-за повреждений или наростов. Очень жестокая процедура. И все же это был единственный выход с 1919 по 1970-е годы.

В то время рентгеновские лучи давали только двумерные изображения. Представьте себе тело как коробку с жидкостью, в которой находится ряд объектов (кости, органы и мышцы): рентгеновский снимок с трудом увидит объект в середине такой коробки, так как со всех сторон что-то находится на пути лучей. Врачам трудно разобраться в 3D-структурах, отображаемых в 2D. Что действительно было необходимо, так это инновация, которая могла бы создавать правильное трехмерное изображение.

В 1960-х годах Годфри Хаунсфилд, сотрудник компании EMI (Electric and Music Industries), крупной британской корпорации, которая также занималась электроникой и другим оборудованием, искал новые области применения компьютеров и придумал инновационный способ их использования для улучшения рентгеновского аппарата. Его идея заключалась во вращении источника и детектора вокруг пациента для получения серии рентгеновских снимков, которые можно было бы затем реконструировать в цифровом виде с помощью компьютеров. Так создание полного 3D-изображения внутренней части тела стало возможным, а сам аппарат получил название «компьютерный томограф», или КТ[23].

Чтобы воплотить свою идею в реальность, Хаунсфилд сначала построил экспериментальную установку сканера мозга. Он отправился на местные скотобойни, где вырезал коровьи мозги для дальнейшего сканирования[24]. В интервью он затем писал с типичным британским юмором, что «сложнее всего было тащить [мозги] через весь Лондон в бумажном пакете»[25].

Его первые тесты с удивительной четкостью показали полное 3D-изображение внутренней органической ткани. Компьютерный томограф даже выявил мельчайшие различия в тканях, которые, по мнению Рентгена, было невозможно запечатлеть: на первых рентгеновских снимках ткани были прозрачными, но объединение нескольких изображений позволяло их увидеть. Для этого потребовались вычислительные мощности, вращающаяся установка и немного хитроумной математики, но метод сработал. Первый сканер испытывался в лондонской больнице Аткинсона Морли в 1971 году. Он состоял из специально сконструированной подвижной кровати, на которой пациент лежал, поместив голову в круглое отверстие со встроенным в него сканирующим оборудованием. На самом деле установка не сильно отличалась от того, как КТ выглядит сегодня.

Первой пациенткой, прошедшей сканирование в 1971 году, стала женщина с подозрением на опухоль в левой лобной доле. Компьютерная томография успешно выявила опухоль, а последующая операция восстановила здоровье пациентки. Тогда Хаунсфилд и его команда «прыгали, как футболисты, забившие победный гол»[26]. Он осознал значимость своей работы: его изобретение положило конец мучениям, связанным с анализом традиционных рентгеновских снимков черепа.

Хаунсфилд не остановился на сканере мозга, который был представлен миру в 1972 году, – он взялся за создание машины, которая могла бы раскрыть внутреннюю работу остального человеческого тела. К 1973 году первые компьютерные томографы установили в больницах Соединенных Штатов, а к 1980 году 3 млн компьютерных томографов было установлено по всему миру. Со временем компьютерные томографы стали настолько повсеместными, что к 2005 году ежегодно проводилось 68 млн сканирований.

С тех пор новые идеи привели к созданию изображений в реальном времени, сочетанию с другими методами визуализации (с которыми мы познакомимся позже) и первостепенному использованию КТ в отделениях неотложной помощи. В 1970-х годах для получения изображения требовалось около получаса, современные машины получают его менее чем за секунду. Были разработаны методы компьютерной томографии, которые помогают врачам перемещаться по сердцу в 3D-формате во время установки стентов, повышая вероятность успеха процедуры. Также при помощи компьютерной томографии изучается внутренняя структура органа, которую затем печатают на 3D-принтере для лучшего понимания того, что на самом деле происходит в организме пациента. Все это помогает планировать операцию и имплантацию без единого разреза на коже. Технологии и возможности продолжают совершенствоваться, особое внимание уделяется увеличению скорости сканирования, снижению дозы облучения и получению все более детальных 3D-изображений.

Путь от открытия рентгеновского излучения до современных компьютерных томографов занял более 70 лет. Для этого потребовалась серия изобретений, прорывов в математических методах и появление компьютеров. Вы можете найти ту или иную форму этой технологии практически в любой больнице мира. Если бы вы спросили врачей во времена Рентгена, как лучше изучить внутреннее строение человеческого тела, они бы просто предложили найти скальпель поострее. Революция в медицине многим обязана стремлению Рентгена и Томсона лучше понять, казалось бы, малоизвестную область физики. Это стремление привело к созданию совершенно нового инструмента и его усовершенствованию Хаунсфилдом и другими учеными.

Конечно, не только медицина выиграла от рентгеновских лучей. В следующий раз, когда будете проезжать через аэропорт, обратите внимание на рентгеновские аппараты для сканирования багажа: они тоже зародились в лаборатории Вюрцбурга.

Наш материальный и физический мир зависит от знаний о рентгеновских лучах. Компании, производящие нефтяные трубы и самолеты, мосты и лестницы, теперь используют рентгеновские снимки, чтобы убедиться, что их продукция соответствует стандартам. Рентгеновские лучи первыми обнаруживают, где образовалась трещина или появился пузырь воздуха, точно так же, как это было в оригинальных экспериментах Рентгена. Этот «неразрушающий контроль» – скрытая часть созданного человеком мира, но именно благодаря ему наши трубы редко лопаются, а самолеты редко падают с неба. «Неразрушающий контроль» – это постоянно развивающаяся отрасль стоимостью 13 млрд долл., а на рентгеновские лучи приходится около 30 % этого рынка.

Электронике потребовалось полвека, а рентгеновскому излучению – почти целое столетие, чтобы реализовать свой нынешний потенциал, но даже открытия, описанные в этой главе, – всего лишь малая часть всей истории. В своей полноте она охватывает столетия постепенного накопления знаний и технологий – от первой вакуумной камеры, созданной в 1643 году Эванджелистой Торричелли, до изобретения первого вакуумного насоса Отто фон Герике в 1654 году. Для создания точного, но в то же время деликатного устройства с хорошо герметичными соединениями для удержания вакуума требовались опытные стеклодувы. Было необходимо оборудование, которое могло бы обеспечить достаточно высокое напряжение, чтобы высвободить электроны из металлических катодов. Таким образом, полный процесс охватывает многие поколения, даже если кажется, что прорыв произошел в мгновение ока.

Просто удивительно, как эксперименты с электронно-лучевой трубкой, проведенные между 1895 и 1897 годами, расширили наше представление об электромагнитном спектре, разрушили идею о том, что атомы – мельчайшие частицы в природе, и привели к открытию первой субатомной частицы. Если бы кого-то попросили предсказать исход этих экспериментов, он бы совершенно точно не смог оценить их влияние на наши знания о физике. Но еще вероятнее, не получилось бы предсказать влияние этих открытий на общество.

Открытия Рентгена и Томсона объединяет и тот факт, что они были быстро внедрены в технологию. Обе идеи стали неотъемлемой частью инноваций в области электроники и медицинского оборудования в последующие десятилетия. Однако фундаментальные концепции, на которых основывались эти технологии, пришли не из промышленности. Они исходили от пытливых умов, экспериментирующих в поисках новых знаний. Сегодня у многих электронно-лучевая трубка, также известная как кинескоп, ассоциируется со старыми телевизорами, но это нечто гораздо большее. Она олицетворяет ту силу, которой обладают движимые любопытством исследования.

Эксперименты с электронно-лучевыми трубками опровергли идею о том, что физика уже почти вся понятна. С зарождением субатомной физики перед любознательными учеными открылись новые перспективы. Следующие важные эксперименты будут проведены одним из учеников Томсона, когда физики начнут спрашивать, что же еще находится внутри атома.

Глава 2
Эксперимент с золотой фольгой: строение атома

Эрнест Резерфорд пробыл в Монреале всего несколько месяцев, когда получил приглашение на дебаты от местного физического общества. Это был 1900 год, и тема была сформулирована так: «Существование тел, меньших, чем атомы». Резерфорд горел желанием принять участие в дебатах и написал своему бывшему наставнику Дж. Дж. Томсону, что надеется победить своего оппонента Фредерика Содди, химика, получившего образование в Оксфорде. Содди был младше Резерфорда на шесть лет. Его всегда интересовали проблемы на стыке физики и химии, но в Резерфорде он нашел физика, который потряс саму основу химии[27]. Эти дебаты положили начало одной из самых удивительных серий открытий в науке и побудили не только ученых, но и художников, философов и историков полностью пересмотреть свои представления об окружающем мире.

Содди заговорил первым. Это был высокий серьезный блондин с голубыми глазами. Младший из семи братьев, родившийся на юге Англии, еще школьником преодолел дефект речи и превратил свою бывшую детскую в химическую лабораторию, где мог проводить эксперименты, пускай иногда и был близок к тому, чтобы поджечь дом. У него были две непоколебимые ценности – правдолюбие и красота[28].

Содди пришел защищать атом. Его позиция заключалась в том, что электрон, открытый Томсоном и другими, должен быть чем-то отличным от «материи», известной ему и другим химикам. «Химики сохранят веру и благоговение перед атомами как постоянными сущностями, если не неизменными, то уж точно еще не преобразованными», – сказал Содди. Затем он бросил вызов Резерфорду: «Возможно, профессор Резерфорд сможет убедить нас в том, что материя, известная ему, действительно та же самая, что известна и нам»[29].

Резерфорд выступил в защиту своей позиции. Электроны, согласно его теории, составляли часть обычной материи. Он описал работу Томсона и тех, кто был до него: Генриха Герца и Филиппа Ленарда в Германии, Жана Перрена во Франции и Уильяма Крукса в Англии. Резерфорд проанализировал эксперименты Томсона по открытию электрона и объяснил, что, поскольку электроны, по-видимому, происходят из материи, они должны составлять часть атома. Он так хорошо объяснил новые экспериментальные результаты, что покинул аудиторию студентов и сотрудников университета Макгилла, будучи уверенным, что теперь уж они изменят свое давнее представление об атомах как о мельчайших неделимых строительных блоках материи. Но хотя Резерфорд и выиграл дебаты, оставалось много вопросов о том, что происходит внутри материи. Химики и физики так и не достигли согласия.

[23] Еще в 1920-х годах нескольким людям пришла в голову идея перемещать источник и детектор рентгеновского излучения, делая множество рентгеновских снимков под разными углами. Объекты в сердце установки находились в фокусе, а то, что было снаружи, оставалось размытым и могло быть проигнорировано. Идея получила название «томография», и около 10 разных ученых, работающих независимо друг от друга, в период с 1921 по 1934 год получили серию патентов на эту идею. Все они могли бы справедливо претендовать на изобретение томографа, но первая реальная рабочая версия была создана Гюставом Гроссманом из Германии в конце 1930-х годов в компании Siemens-Reiniger-Veifa GmbH. Правда, метод оставался неуклюжим и сложным в использовании и по-прежнему не различал плотность между различными типами тканей внутри тела.
[24] Обычные коровьи мозги плохо подходили. Метод умерщвления на скотобойнях сильно их повреждал, поэтому Хаунсфилду пришлось ходить в еврейские кошерные дома, где коровий мозг был не так поврежден и лучше подходил для экспериментов с компьютерной томографией.
[25] С. Бейтс и др. Годфри Хаунсфилд: интуитивный гений компьютерной томографии (Godfrey Hounsfield: Intuitive Genius of CT). Британский институт радиологии, Лондон, 2012.
[26] Там же.
[27] После учебы в Оксфорде Содди эмигрировал в Канаду, надеясь получить профессорскую должность в Торонто, но потерпел неудачу, поэтому в итоге был нанят лаборантом в университет Макгилла.
[28] Muriel Howorth. Pioneer Research on the Atom: The Life Story of Frederick Soddy. New World Publications, London, 1958.
[29] Там же.