Бесконечная сила - Стивен Строгац

- Автор: Стивен Строгац
- Серия: МИФ Научпоп
- Жанр: зарубежная образовательная литература, математика, научно-популярная литература
- Размещение: фрагмент
- Теги: законы мироздания, занимательная математика, математический анализ, научные открытия, познавательная информация
- Год: 2004
Бесконечная сила
Тем не менее, как мы вскоре увидим, бесконечность оказалась манной небесной. Если учесть все открытия и технологии, которые в итоге выросли из анализа, то идея использовать бесконечность для решения трудных геометрических задач была одной из лучших в истории.
Конечно, в 250 году до нашей эры предвидеть это было невозможно. Тем не менее бесконечность тут же дала несколько впечатляющих результатов. Одним из первых и лучших стало решение давней загадки: как найти площадь круга [29 - Katz, History of Mathematics, раздел 1. 5, представляет различные подходы к измерению площади круга, сделанные в различных мировых культурах. Первое доказательство было представлено Архимедом; смотрите Dunham, Journey Through Genius, глава 4, и Heath, The Works of Archimedes, 91–93. ].
Доказательство с помощью пиццы
Перед тем как вдаваться в подробности, давайте набросаем ход рассуждений. Наша стратегия – представить круг в виде пиццы, а затем нарезать ее на бесконечное множество кусочков и волшебным образом переложить их так, чтобы получился прямоугольник. Это даст нам ответ, который мы ищем, поскольку перекладывание кусочков, очевидно, не меняет их площадь, а находить площадь прямоугольника мы умеем: нужно умножить его длину на ширину. Результатом будет формула для площади круга.
Для такого рассуждения пицца должна быть идеализированной математической пиццей – идеально плоской и круглой, с бесконечно тонкой корочкой. Обозначим буквой С ее периметр (или длину окружности) – расстояние вдоль границы. Длина окружности – вовсе не то, что обычно интересует любителей пиццы, однако при желании мы могли бы измерить величину C с помощью рулетки.
Еще одна необходимая величина – радиус пиццы r, который определяется как расстояние от ее центра до любой точки корочки. В частности, если мы нарежем пиццу на ломтики, проводя разрезы от центра к краям, то длина прямого отрезка в таких ломтиках будет равна r.
Предположим, что мы разделили пиццу на четыре части. Их можно переложить следующим способом, но он не выглядит слишком многообещающим.
Получившаяся фигура с выступами вверху и внизу смотрится несколько странно. Это явно не прямоугольник, и определить ее площадь непросто. Похоже, нам придется отступить. Но, как и в любой драме, герою перед триумфом предстоит преодолеть трудности. Драматическое напряжение нарастает.
Однако раз уж мы тут застряли, то отметим две вещи, потому что они будут справедливы в ходе всего доказательства и в итоге дадут нам размеры искомого прямоугольника. Первая – одна половина корочки стала искривленной верхней границей новой фигуры, а вторая – нижней частью. Поэтому длина верхней границы равна C/2 и нижней границы – тоже C/2, как изображено на рисунке. Как мы увидим, в итоге эти границы превратятся в длинные стороны прямоугольника. Вторая – длина всех наклонных боковых сторон получившейся фигуры равна r, потому что это просто стороны исходных ломтиков пиццы. Эти боковые отрезки в итоге превратятся в короткие стороны прямоугольника.
Причина, по которой мы пока не видим никаких признаков искомого прямоугольника, – у нас еще недостаточно ломтиков. Если разрезать пиццу на восемь частей и переложить их таким же образом, то фигура окажется более прямоугольной.
По сути, пицца начинает походить на параллелограмм. Неплохо – по крайней мере это почти прямоугольник. Выступы вверху и внизу уже не так выпирают, как на предыдущем рисунке, – из-за большего количества ломтиков. Как и ранее, длина верхней границы фигуры равна C/2, а боковой границы – r.
Чтобы картинка выглядела еще лучше, разрежем пополам один из боковых ломтиков и перенесем его на другую сторону.
Теперь фигура очень похожа на прямоугольник. Да, вверху и внизу еще есть выступы из-за кривизны исходной корочки, но все же мы добились прогресса.
Похоже, увеличение числа кусков помогает, поэтому продолжим их нарезать. При шестнадцати ломтиках и таком же косметическом переносе половинки крайнего куска, как мы сделали только что, получается следующая фигура:
Чем больше кусков мы берем, тем сильнее сглаживаем выступы в верхней и нижней частях получающейся фигуры. Наши операции создают последовательность фигур, которые волшебным образом приближаются к определенному прямоугольнику. Поскольку фигуры к нему все ближе и ближе, назовем его предельным прямоугольником.
Смысл всей процедуры в том, что найти площадь предельного прямоугольника очень просто – достаточно перемножить его ширину и высоту. Все, что нам осталось, – выразить эти ширину и высоту через параметры исходного круга. Поскольку ломтики располагались вертикально, высота – это просто радиус r исходного круга, а ширина – половина длины его окружности, ведь его граница пошла на создание верхней и нижней границы прямоугольника – как это было для всех промежуточных фигур с выступающими краями. Следовательно, ширина равна C/2. Таким образом, площадь прямоугольника A = r? C / 2 = rC / 2. Но учитывая, что перекладывание ломтиков не меняло площади исходного круга, то и его площадь должна быть точно такой же!
Этот результат для площади круга, A = rC / 2, впервые получил (используя аналогичные, но более строгие рассуждения) древнегреческий математик Архимед (287–212 до нашей эры) в трактате «Измерение круга».
Самым новаторским аспектом доказательства было привлечение на помощь бесконечности. Имея всего четыре, восемь или шестнадцать ломтиков, мы могли сложить только фигуру с выступами. После малообещающего старта мы продвинулись к успеху, начав брать больше ломтиков; при этом получающаяся фигура все сильнее приближалась к прямоугольнику. Однако только при бесконечном множестве кусков она становилась по-настоящему прямоугольной. Эта идея и легла в основу анализа. С бесконечностью все упрощается.
Пределы и загадка стены
Предел подобен недостижимой цели. Вы можете подбираться к нему все ближе и ближе, но никогда не пройдете весь путь до конца.
Например, в доказательстве, использующем пиццу, мы могли приближаться к прямоугольнику, нарезая все большее количество ломтиков и переставляя их. Но истинной «прямоугольности» нам никогда не добиться. Мы можем лишь приблизиться к этому идеалу. К счастью, в анализе недостижимость предела обычно не имеет значения. Нередко мы можем решить задачу, представив, что способны достичь предела, а затем посмотрев, что следует из такого представления. Фактически многие из пионеров в этой области сделали свои великие открытия именно таким образом. Логически – нет. С воображением – да. Успешно – весьма.
Предел – это тонкое понятие, и в анализе оно занимает центральное место. Его не просто уловить, потому что в повседневной жизни эта идея не встречается. Пожалуй, ближайшей аналогией будет загадка стены. Если вы проходите половину расстояния до стены, затем половину оставшегося расстояния, потом половину оставшегося и так далее, то достигнете ли в конце концов этапа, на котором доберетесь до стены?
Читать похожие на «Бесконечная сила» книги

Это книга о том, как одни современные технологии, соединяясь с другими технологиями, в корне преображают промышленность, розничную торговлю, рекламу, индустрию развлечений, образование и многие другие сферы нашей жизни. Причем этот процесс идет экспоненциально нарастающими темпами, придавая турбо-ускорение как самим переменам, так и их масштабам. Питер Диамандис и Стивен Котлер создали полную захватывающих подробностей дорожную карту ближайших лет. Какие новшества ждут нас уже завтра? Как будут

Многие пары занимаются сексом второпях, не давая себе возможности хорошо возбудиться, а потом задаются вопросом, куда же пропала магия из их сексуальной жизни. Или наоборот, усложняют процесс, утрачивая трепет и перестав получать удовольствие от процесса. Для хорошего секса нам всем необходим витамин «П» – принятие. Себя, партнера и тех условий, в которых вам обоим комфортно. Если хотите, это свод правил, и их нужно не столько соблюдать, сколько понимать. Стивен Снайдер, психотерапевт с

Нью-Йорк 40-х годов. Лилиан Пентикост самый известный частный детектив в городе, но здоровье начинает ее подводить. После знакомства с мисс Паркер, она решает нанять девушку в качестве помощницы. Ведь Уиллоджин обладает уникальным набором навыков: мастерски метает ножи, с завязанными глазами вскрывает любой замок и легко кладет на лопатки мужчин в два раза больше нее. Незаурядной парочке вскоре приходится расследовать дело о таинственном убийстве. В особняк Коллинзов, на вечеринку по случаю

Новая книга доктора Стивена Гандри, знаменитого кардиолога и кардиохирурга, нацелена на ускоренное изучение и практическое применение программы «Парадокс растений». Ее ключевым понятием являются лектины – белки, которые содержатся в злаках, многих фруктах и овощах, орехах, бобовых и молочных продуктах. При попадании в организм человека они вызывают сильные воспалительные реакции, которые могут привести к серьезным проблемам со здоровьем. Многие растительные продукты, которые считаются

Молодой учитель английского языка Джейкоб Эппинг никогда не думал, что сможет повлиять на события мирового масштаба. И даже в самых смелых фантазиях не мог вообразить, что в закусочной его приятеля Эла Темплтона находится портал в 1958 год… Но в жизни иногда происходят вещи куда более удивительные, чем самые странные фантазии. Эл – живое тому доказательство. Одержимый идеей предотвратить убийство президента Кеннеди в 1963 году, владелец закусочной отправился в прошлое, но не сумел дожить до

Парадокс долголетия – это способность умереть молодым в преклонном возрасте. Многие полагают, что это фантастика, но они ошибаются. Человек вполне может дожить до ста лет, чувствуя себя бодрым и энергичным, не ощущая хронической усталости и не посещая каждую неделю врачей. Более того, ни в чем себе особо не отказывая. В своей книге «Парадокс долголетия» Стивен Гандри рассказывает читателям, откуда взялись мифы о старении, почему то, что, по нашему мнению, должно сохранить молодость, только

Жители небольшого городка в ужасе: кто-то зверски убил и изнасиловал одиннадцатилетнего Фрэнка Питерсона. И этот кто-то – школьный учитель и тренер бейсбольной команды Терри Мейтленд. Его видели с Фрэнком в день преступления, а отпечатки пальцев Мейтленда найдены на месте убийства. Детектив Ральф Андерсон арестовывает маньяка, не дожидаясь окончания важного бейсбольного матча. Но вместо чистосердечного раскаяния Мейтленд заявляет о невиновности. В момент убийства его не было в городе! Это

Если верить статистическим данным, только в США ежегодно пропадает восемьсот тысяч детей. Большинство из них находятся, но тысячи – нет. Куда исчезают малыши и что с ними происходит? Пытаясь привлечь внимание широкой общественности к проблеме похищения детей, известный американский писатель Стивен Кинг предлагает свой вариант ответа. Фантастический? Да. Страшный? Безусловно! Правдоподобный? Кто знает… Все произошло мгновенно, за каких-то пару минут. Посреди ночи в доме на тихой улочке в