Бесконечная сила - Стивен Строгац

- Автор: Стивен Строгац
- Серия: МИФ Научпоп
- Жанр: зарубежная образовательная литература, математика, научно-популярная литература
- Размещение: фрагмент
- Теги: законы мироздания, занимательная математика, математический анализ, научные открытия, познавательная информация
- Год: 2004
Бесконечная сила
Конечно же, на любом шаге многоугольник по-прежнему остается многоугольником. Это еще не круг и никогда им не станет. Фигуры приближаются к кругу, но никогда не совпадут с ним. Здесь мы имеем дело с потенциальной бесконечностью, а не с актуальной. Так что с логической точки зрения все безукоризненно.
Но что, если бы мы могли пройти весь путь до актуальной бесконечности? Был бы итоговый многоугольник с бесконечным количеством углов и бесконечно короткими сторонами кругом? Заманчиво так думать, ведь тогда многоугольник окажется гладким. Все углы будут сошлифованы. Все станет идеальным и красивым.
Очарование и опасность бесконечности
Здесь заложен общий принцип: пределы часто проще, чем приближения, ведущие к ним. Круг проще и изящнее, чем любой из угловатых многоугольников, к нему приближающих. То же самое относится и к доказательству с помощью пиццы, где предельный прямоугольник проще и элегантнее, нежели бугристые фигуры с некрасивыми выступами, и к дроби 1/3. Это проще и приятнее, нежели любое из неуклюжих приближений с большими числителями и знаменателями вроде 3/10, 33/100 или 333/1000. Во всех этих случаях предельная фигура или число проще и симметричнее, чем конечные приближения.
В этом и состоит очарование бесконечности. Здесь все становится лучше.
Помня об этом, давайте вернемся к притче о многоугольнике с бесконечно большим количеством углов. Нужно ли сделать решительный шаг и сказать, что круг – это действительно многоугольник с бесконечно большим количеством бесконечно малых сторон? Нет. Мы не должны поддаваться искушению и так поступать, поскольку это означает впасть в грех актуальной бесконечности. Это обрекло бы нас на логический ад.
Чтобы понять, почему, предположим, что мы на миг подумали, будто круг – на самом деле многоугольник с бесконечным числом углов и бесконечно малыми сторонами. Какова длина этих сторон? Если она равна 0, то общая длина всех сторон – бесконечность, умноженная на 0, – должна давать длину окружности. Но представьте окружность вдвое большего размера. Точно так же ее длина должна равняться бесконечности, умноженной на 0. Получается, бесконечность, умноженная на 0, должна равняться и длине нашей окружности, и вдвое большему числу. Что за ерунда? Не существует разумного способа определить результат умножения бесконечности на ноль, а потому нет разумного способа рассматривать круг как правильный многоугольник с бесконечным числом сторон.
Тем не менее в таком интуитивном представлении есть нечто искушающее. Подобно библейскому первородному греху, по той же причине трудно сопротивляться и первородному греху анализа – соблазну считать, что круг – это правильный многоугольник с бесконечным числом сторон. Он соблазняет нас запретным знанием, идеями, недоступными для обычных средств. На протяжении тысячелетий геометры пытались вычислить длину окружности. Если бы круг можно было заменить многоугольником со множеством крохотных прямых сторон, задача была бы гораздо проще.
Прислушиваясь к шипению этого змея-искусителя – но все же сдерживаясь, используя потенциальную бесконечность вместо более заманчивой актуальной, – математики научились решать задачу о длине окружности и другие загадки кривых. В следующих главах мы узнаем, как им это удалось, а пока попробуем еще глубже понять, насколько опасной может быть актуальная бесконечность. Этот грех ведет ко многим другим, включая тот, о котором учителя предупреждали нас в первую очередь.
Грех деления на ноль
Во всем мире школьников учат, что делить на ноль нельзя. Должно быть, они шокированы существованием такого табу. Предполагается, что числа дисциплинированны и хорошо себя ведут. Урок математики – место для логики и рассуждений. И все же можно задавать о числах простые вопросы, на которые нет ответов, или пытаться сделать с ними простые вещи, которые не работают или не имеют смысла. Деление на ноль – одна из них.
Корень проблемы – в бесконечности. Деление на ноль вызывает бесконечность примерно так же, как доска для спиритических сеансов – духов из другого мира. Это рискованно. Не ходите туда.
Тем, кто не в силах сопротивляться искушению и желает понять, почему в тенях скрывается бесконечность, советуем поделить 6 на какое-нибудь маленькое число, близкое к нулю, но не равное ему, например 0, 1. В этом ничего запретного нет. Если разделить 6 на 0, 1, получится 60, довольно прилично. Поделим 6 на еще меньшее число, скажем 0, 01; ответ будет больше – 600. Если мы отважимся разделить 6 на число, которое гораздо ближе к 0, допустим, на 0, 0000001, то ответ будет еще больше и составит 60 000 000. Тенденция ясна. Чем меньше знаменатель, тем больше частное. В пределе, когда знаменатель приближается к нулю, частное стремится к бесконечности. Вот настоящая причина, почему нельзя делить на 0. Малодушные говорят, что ответ неопределенный, но на самом деле он бесконечный.
Все это можно представить себе следующим образом. Вообразите, что вы делите 6-сантиметровую линию на части длиной 0, 1 сантиметра. Получается 60 кусков, уложенных вплотную друг к другу.
Точно так же (но я не буду пробовать это нарисовать) эту линию можно поделить на 600 частей по 0, 01 сантиметра или на 60 000 000 частей по 0, 0000001 сантиметра.
Если мы продолжим и доведем это безумное деление до предела, то придем к заключению, что наша 6-сантиметровая линия состоит из бесконечного числа частей нулевой длины. Возможно, это звучит правдоподобно. В конце концов, линия состоит из бесконечного количества точек, и каждая точка имеет нулевую длину.
Но с философской точки зрения нервирует то, что аналогичное рассуждение можно применить к линии любой длины. В самом деле, в числе 6 нет ничего особенного. Мы могли бы с равным успехом утверждать, что линия длиной 3 сантиметра, или 49, 57, или 2 000 000 000 состоит из бесконечного числа точек нулевой длины. Очевидно, что умножение 0 на бесконечность может дать нам любой мыслимый результат – 6, 3, 49, 57 или 2 000 000 000. С математической точки зрения это ужасно.
Грех актуальной бесконечности
Прегрешение, которое втянуло нас в эту путаницу, заключалось в том, что мы вообразили, будто действительно можем достичь предела и трактовать бесконечность как достижимое число. Еще в IV веке до нашей эры греческий философ Аристотель [30 - Henry Mendell, Aristotle and Mathematics, Stanford Encyclopedia of Philosophy, https: //plato. stanford. edu/archives/spr2017/entries/aristotle-mathematics/ (https: //plato. stanford. edu/archives/spr2017/entries/aristotle-mathematics/). ] предупреждал, что такое обращение с бесконечностью способно привести к различным логическим неприятностям. Он выступал против актуальной бесконечности [31 - Katz, History of Mathematics, 56, и Stillwell, Mathematics and Its History, 54, обсуждают аристотелевскую разницу между актуальной бесконечностью и потенциальной бесконечностью. ], уверяя, что смысл имеет только потенциальная бесконечность.
В контексте разрезания линии на части потенциальная бесконечность означает, что линию можно разрезать на сколь угодно большое количество частей, но оно всегда конечно, а длина частей не равна 0. Это вполне допустимо и не вызывает никаких логических затруднений.
Читать похожие на «Бесконечная сила» книги

Это книга о том, как одни современные технологии, соединяясь с другими технологиями, в корне преображают промышленность, розничную торговлю, рекламу, индустрию развлечений, образование и многие другие сферы нашей жизни. Причем этот процесс идет экспоненциально нарастающими темпами, придавая турбо-ускорение как самим переменам, так и их масштабам. Питер Диамандис и Стивен Котлер создали полную захватывающих подробностей дорожную карту ближайших лет. Какие новшества ждут нас уже завтра? Как будут

Многие пары занимаются сексом второпях, не давая себе возможности хорошо возбудиться, а потом задаются вопросом, куда же пропала магия из их сексуальной жизни. Или наоборот, усложняют процесс, утрачивая трепет и перестав получать удовольствие от процесса. Для хорошего секса нам всем необходим витамин «П» – принятие. Себя, партнера и тех условий, в которых вам обоим комфортно. Если хотите, это свод правил, и их нужно не столько соблюдать, сколько понимать. Стивен Снайдер, психотерапевт с

Нью-Йорк 40-х годов. Лилиан Пентикост самый известный частный детектив в городе, но здоровье начинает ее подводить. После знакомства с мисс Паркер, она решает нанять девушку в качестве помощницы. Ведь Уиллоджин обладает уникальным набором навыков: мастерски метает ножи, с завязанными глазами вскрывает любой замок и легко кладет на лопатки мужчин в два раза больше нее. Незаурядной парочке вскоре приходится расследовать дело о таинственном убийстве. В особняк Коллинзов, на вечеринку по случаю

Новая книга доктора Стивена Гандри, знаменитого кардиолога и кардиохирурга, нацелена на ускоренное изучение и практическое применение программы «Парадокс растений». Ее ключевым понятием являются лектины – белки, которые содержатся в злаках, многих фруктах и овощах, орехах, бобовых и молочных продуктах. При попадании в организм человека они вызывают сильные воспалительные реакции, которые могут привести к серьезным проблемам со здоровьем. Многие растительные продукты, которые считаются

Волна страшных убийств захватила небольшой американский город Дерри. Один за одним погибают дети, но полиция бессильна. Маньяк не оставляет следов, нет ни единой зацепки. Семеро одиннадцатилетних ребят решаются найти убийцу – жестокое нечто по имени Оно. Каждому из них предстоит пережить встречу с чудовищем, и никто из взрослых не придет на помощь. Ведь Оно – воплощение детских страхов, которое взрослые просто не способны увидеть.

Молодой учитель английского языка Джейкоб Эппинг никогда не думал, что сможет повлиять на события мирового масштаба. И даже в самых смелых фантазиях не мог вообразить, что в закусочной его приятеля Эла Темплтона находится портал в 1958 год… Но в жизни иногда происходят вещи куда более удивительные, чем самые странные фантазии. Эл – живое тому доказательство. Одержимый идеей предотвратить убийство президента Кеннеди в 1963 году, владелец закусочной отправился в прошлое, но не сумел дожить до

Парадокс долголетия – это способность умереть молодым в преклонном возрасте. Многие полагают, что это фантастика, но они ошибаются. Человек вполне может дожить до ста лет, чувствуя себя бодрым и энергичным, не ощущая хронической усталости и не посещая каждую неделю врачей. Более того, ни в чем себе особо не отказывая. В своей книге «Парадокс долголетия» Стивен Гандри рассказывает читателям, откуда взялись мифы о старении, почему то, что, по нашему мнению, должно сохранить молодость, только

Жители небольшого городка в ужасе: кто-то зверски убил и изнасиловал одиннадцатилетнего Фрэнка Питерсона. И этот кто-то – школьный учитель и тренер бейсбольной команды Терри Мейтленд. Его видели с Фрэнком в день преступления, а отпечатки пальцев Мейтленда найдены на месте убийства. Детектив Ральф Андерсон арестовывает маньяка, не дожидаясь окончания важного бейсбольного матча. Но вместо чистосердечного раскаяния Мейтленд заявляет о невиновности. В момент убийства его не было в городе! Это

Новая версия романа «Противостояние», с которым читатели познакомились в 1978 году. На этот раз захватывающая история мутации вируса гриппа и ужасающих последствий дополнена подробностями и разъяснениями действий героев, ранее неизвестными гранями характеров и более развернутой сюжетной линией. Книга о бескомпромиссной борьбе между жизнью и смертью, добром и злом. Из нелегкой схватки живыми смогут выйти лишь те, кто сумеет увидеть настоящего врага, не потеряет веры и человеческих качеств. Когда

Если верить статистическим данным, только в США ежегодно пропадает восемьсот тысяч детей. Большинство из них находятся, но тысячи – нет. Куда исчезают малыши и что с ними происходит? Пытаясь привлечь внимание широкой общественности к проблеме похищения детей, известный американский писатель Стивен Кинг предлагает свой вариант ответа. Фантастический? Да. Страшный? Безусловно! Правдоподобный? Кто знает… Все произошло мгновенно, за каких-то пару минут. Посреди ночи в доме на тихой улочке в