Светлые века (страница 7)

Страница 7

Если такие вычисления кажутся вам каким-то арифметическим подвигом, учтите, что до денежных реформ 1960-х и 1970-х годов школьникам всей бывшей Британской империи приходилось учиться складывать и вычитать двенадцатые и двадцатые доли фунтов, шиллингов и пенсов. (Чуть ли не весь остальной мир перешел на десятичную денежную систему еще в XIX веке.) Если немного попрактиковаться, сложению и вычитанию римских чисел тоже нетрудно научиться. Для начала можно представить себе X, десятку, как единицу – I, перечеркнутую линией, обозначающей, что перед нами сумма десяти таких единиц. V (пятерка) – это десятка (X), разделенная пополам горизонтально. Элементарное сложение, например VII + XVIII, нетрудно выполнить, записав все цифры рядом и переставив их для удобства местами: VIIXVIII превращается в XVVIIIII, а отсюда легко прийти к верному результату: XXV.

На самом деле подобные примеры можно решать и в уме. Для вычислений посложнее римские цифры переводили в более гибкий формат. В своем знаменитом трактате «Об исчислении времен» живший в VIII веке монах из Нортумбрии Беда Достопочтенный – выдающийся энциклопедист – знакомит читателя с двумя способами сделать это: греческая алфавитная система и метод, который он называл «очень полезным и простым умением счета на пальцах»[63].

Рис. 1.6. Положения пальцев при счете. Иллюстрация из трактата Беды «Об исчислении времен»

Как Беда и другие монахи считали на пальцах в десятичной системе? Вытяните руки перед собой, ладонями от лица (рис. 1.6). Начинать следует слева, с трех крайних пальцев левой руки. Эти три пальца, выпрямленные или полностью либо частично согнутые, показывают единицы от 1 до 9. Вот почему целые числа назывались digiti, что на латыни означает «пальцы»; отсюда и название цифровых технологий (digital)[64]. Степени десяти отсчитывали, по-разному сгибая и скрещивая большой и указательный пальцы (латинское слово «десять» – articuli – означает «костяшки»). За сотни отвечали большой и указательный пальцы правой руки, а за тысячи – средний, безымянный и мизинец. Таким образом, пальцами можно было показать любое число от 0 до 9999. Пальцам присваивалось конкретное разрядное значение – тысячам, сотням, десяткам и единицам было выделено определенное место, поэтому сложение и вычитание больших чисел трудности не представляли, более того, этим способом можно было даже решать простейшие примеры на умножение.

Самые маленькие числа откладывали на пальцах левой руки, и тому было две причины. Во-первых, в этом случае человек, который стоит к вам лицом, читает число как полагается, то есть слева направо. Жестовая арифметика служила не только для счета, но и для коммуникации. Жесты использовали на рынках, где шум и языковой барьер могли помешать разговору, или в монастырях, где нужно было соблюдать тишину. Беда даже предлагал использовать их в качестве алфавитно-цифрового кода, позволяющего передавать тайные сообщения. Во-вторых, если вы в своих вычислениях не выходите за сотню, правая рука остается свободной, и ею можно делать заметки, куда-то указывать или что-то в ней держать. Изумительно практичная система Беды пришла прямиком из классных комнат, где монахи учились использовать руки для запоминания музыкальной грамоты и определения дат или дней солнечного и лунного циклов.

Для простых вычислений было вполне достаточно пальцев, а вот для сложных использовали calculi – камешки или фишки. Джон Вествик учился работать с числами и наверняка мастерски пользовался абаком – счетной доской. Размещение камешков на расчерченной линиями доске представляло собой разложение числа на разряды. Некоторые разновидности абаков позволяли добавить промежуточную позицию для пяти единиц, пяти десятков, пяти сотен и так далее, и тогда фишек для счета требовалось меньше. В других разновидностях сами фишки были пронумерованы цифрами от 1 до 9, и тогда абак был просто рамкой, разделяющей разряды единиц, десятков, сотен и так далее. Монахи рисовали такие рамки в книгах и манускриптах, расчерчивая их на столбцы, которые часто стилизовали под колоннады своей обители, и раскладывали там счетные фишки. В промежутки между колонками они вписывали свои вычисления[65].

Абаками активно пользовались вплоть до Нового времени, несмотря на широкое распространение других, более совершенных техник счета. В сочинении «Жемчужина философии», популярнейшем учебнике, написанном картезианским монахом Грегором Рейшем и выдержавшем в XVI веке 12 изданий, раздел, посвященный арифметике, начинается с гравюры, иллюстрирующей два подхода к предмету (рис. 1.7). Слева – Боэций, позднеримский теоретик свободных искусств. Еще один энциклопедист (для средневековой науки всесторонне одаренные люди не редкость), Боэций писал труды по логике, музыке и арифметике, но наибольшую известность ему принесло «Утешение философией», размышление о природе человека. Книга оставила глубокий след в веках: только на английский язык ее переводили Альфред Великий, Джеффри Чосер и Елизавета I[66]. В этом сочинении Боэций, как многие астрономы до и после него, размышлял о необъятности Вселенной, космически малой величине Земли и холоде далеких звезд. Его присутствие на гравюре напоминает читателям, что математика – нечто большее, чем абстрактные величины.

Рис. 1.7. Арифметика. Фронтиспис четвертого тома «Жемчужины философии» Грегора Рейша (1503). Иллюстрация Альбана Графа

Справа на гравюре изображена фигура равной значимости: это Пифагор. Великий греческий философ выкладывает на счетной доске числа 1241 и 82. Самая дальняя от него линия – это тысячи, следующая – сотни, и так далее, но обратите внимание: между линиями десятков и сотен выделено место для полусотен. Боэций же демонстрирует индо-арабские цифры и их преимущества для записи дробей. Между ними стоит госпожа Арифметика, ее платье украшено степенями двойки и тройки. Хотя в конечном итоге индо-арабские цифры, для операций с которыми достаточно было пера и бумаги, победили (чем они в значительной степени обязаны появлению бухгалтерского учета и сложных банковских операций), счетные доски благодаря своей бесспорной универсальности продолжали применяться и в Новое время. В умелых руках они не уступают электронным калькуляторам. В 1946 году в Токио состоялось захватывающее публичное состязание между японским абацистом и американцем, считавшим на калькуляторе. Победу одержал абацист, который в решении серии сложных математических задач продемонстрировал как невероятную скорость, так и высокую точность вычислений[67].

Менее опытным пользователям счетная доска могла пригодиться для записи промежуточных результатов вычислений. Средневековые математики знали множество способов упростить вычисления, разбивая задачу на серию операций, которые можно было произвести в уме или с помощью абака. Джон Вествик наверняка владел какими-то из них. Один способ, который называют по-разному: умножением по методу русских крестьян или египетским методом, был придуман независимо в нескольких странах, и ему вполне могли обучать и в Сент-Олбанской школе. Он сводит объемные и сложные примеры на умножение и деление к серии удвоений и делений пополам. Популярность этого метода может объяснить, почему в первых учебниках арифметики, использующей новые индо-арабские цифры, умножению и делению числа на два учили как отдельным операциям – чему-то среднему между сложением и умножением.

Красота метода удвоения и деления пополам – в том, что единственное, что вам нужно знать, – это как прибавить число к самому себе. Пусть вам нужно умножить 43 на 13. Запишите эти числа рядом и начинайте удваивать большее и делить пополам меньшее (отбрасывая остаток). Вот что у вас получится:

Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Если вам понравилась книга, то вы можете

ПОЛУЧИТЬ ПОЛНУЮ ВЕРСИЮ
и продолжить чтение, поддержав автора. Оплатили, но не знаете что делать дальше? Реклама. ООО ЛИТРЕС, ИНН 7719571260

[63] Bede, The Reckoning of Time, ed. and tr. F. Wallis (Liverpool, 2004), 9.
[64] См., например, The Crafte of Nombryng, from British Library MS Egerton 2622, ed. R. Steele, The Earliest Arithmetics in English, EETS ES 118 (London: 1922): 3–32, at 5.
[65] Например: Oxford, St John's College MS 17, ff. 41v-42r (Thorney, 12th century), http://digital.library.mcgill.ca/ms-17.
[66] Вклад (если таковой был) Альфреда в приписываемый ему перевод подвергается сомнению; см. J. Bately, 'Did King Alfred Actually Translate Anything? The Integrity of the Alfredian Canon Revisited,' Medium Ævum 78 (2009): 189–215. Перевод, сделанный Елизаветой в 1593 году, сохранился в ее собственноручной записи (Kew, National Archives SP 12/289).
[67] T. Kojima, The Japanese Abacus: Its Use and Theory, quoted in L. Fernandes, 'The Abacus vs. the Electric Calculator', https://www.ee.ryerson.ca/~elf/abacus/abacus-contest.html.